
10.2 LIGAND.FIELD SPECTRA 
OF OCTAHEDRAL COMPLEXES' 

10.2.1 Energy States from Spectral Terms 

Spectral terms in atoms or ions arise from coupling of the angular momentum () of indi- 
vidual electrons in ways limited by the Pauli exclusion principle to afford states of difer 
ing total angular momentum (L) and different energy (arising from differences in electron 
repulsion; see page 34): The values ofl associated with the various hydrogenlike orbitals 
arise from the solution of the Schrödinger equation for H, a problem having spherical sym- 
metry. On placing a transition metal ion in an electric field of less-than-spherical symme- 
try such as Os, l ceases to be a valid quantum number and orbitals are described by their 
symmetry labels (irreducible representations) for O, or the appropriate symmetry, in-
stead. A physical manifestation of this is sometimes the splitting of a set of orbitals which 

were degenerate in the free ion. 

In spherical symmetry the character of the representation for a state having an orbital an-

gular momentum quantum number of l (or L) under an operation of the spherical group 
R(3) (Douglas and Hollingsworth, pp. 87-90, see General References) is given by 

xIC(o)] = Sin / for rotation by an angle of o radians sin o/2 (10.1) 

XISG)] = Sn + Jd + a) 

sin (o + ) 

for an improper rotation by an angle of d 
radians (minus sign for ungerade states) (10.2) 

from which the more specific equations for symmetry operations E, a, and i below'are eas- 

ily obtained: 

xE) = 2 +1 (the character under the identity operation (10.3) is the degeneracy of the orbital set) 
(minus sign for ungerade states, o 
represents a symmetry plane) 

xlo) = *sin(! + } 
(10.4) 

x(i) = #(2 + 1) (minus sign for ungerade states) (10.5) 
To obtain the symmetry species into which a set of orbitals split in a symmetry lower than 
spherical, one obtains the appropriate characters by Equations (10.1)-(10.5) and reduces 
the representation by means of Equation (3.13). Thus, for a set of d orbitals (! = 2) or aD 
spectroscopic term (L = 2) in O, symmetry, one obtains the following representation which reduces to e, +y for d and E, + T for D: 

'This section uses the notation and terminology of group theory but does not require the detailed manipulations of Section 3.5. The material of Sections 1.4 and 1.5 is useful as background. 
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OE 8C, 6C2 6C 3C2 i 6S 8S% 30, 6 
T5-1 -11 5 -1-1 e, t h, or D> E, + Ta The e, orbitals (d, and da-a) and 2 orbitals (d,,, d,., d,) are shown in Figure 9.8. As you can verify for yourself, by using the operations on p orbitals or using the equations above, an octahedral field does not split the p orbitals. They remain triply degenerate and are characterized by their symmetry properties as u. Likewise, the nondegenerate, totally symmetric s orbital becomes a1g. See R. L. DeKock, A. L. Kromminga, and T. S. Zwier, J. Chem. Educ. 1979, 56, 510. 

lons in symmetric ligand fields have different energy states which result not only from differences in electron repulsion energy (as they do in free ions) but also from the splitting of orbital degeneracies by the ligand field. The d' case is quite simple because there is no electron repulsion. The electron is in the /2g orbital in the ground state in an octahedral field. Thed' ion [Ti(H20)3* shows a single absorption band in the visible region of the spectrum corresponding to the transition t> e (see Figure 9.11). The energy of the band maximum is the splitting parameter 10Dq. The energy states of the complex follow by analo8y to the behavior of orbitals in going from the free ion to the ion in the complex. Just as the d(l = 2) orbitals split into t2e + eg, so the *D term (L = 2) of the d configuration splits into *T2 and *E, with the. same spin multiplicity in an O, field. 
In a similar fashion, S(L = 0) terms become A1, and P terms become Ti, in an octa-

hedral field. In a centrosymmetric point group (e.g., Os), all spectral terms arising from 
d" configurations give g states. Terms arising from p" or f" configurations give states 

which areu if n is odd and g ifn is even (u X u = 8). If the point group is noncentrosym-
metric (e.g., Ta), the g or u subscript is omitted. Table 10.1 lists the states arising from 
various spectral terms for d" configurations in an O, field. Note that the degeneracy (5-fold 
for D, 7-fold for F, etc.; the same as for the corresponding orbital sets) is conserved. 

ExAMPLE 10.1: What states are expected in an octahedral field from a 'G free ion term? Verify 
the result as the same degeneracy as G. 

Solution: From Table 10.1 the singlet states in O, are 'Aig, 'E,, 'Tig, and 'T2g. The degeneracy is 
1+2+3+3 9. 

Table 10.l Splitting of spectral terme for d° 

configurations in an octahedral field 

States in an octahedral field Term Degeneracy 

Aig 
Tis 
E, + Th 

S 
P 3 

D 
F 

Ai+ E, + Ti +T 

E, +Ti + Ti +Ta 
At Azy + E, + Ti + T+ T 

G 9 
H 11 

13 
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10.2.2 Selection Rules 

Oevery possible transition is seen in a spectrum. In studying any type o spectrum, one 
O0Ject is to learn what the characteristics of the ground and excited states must be, in order 

at ransitions between them may be observed. The statements of required characteristics 
e called selection rules. If ground and excited states for a possible transition possess the 
required characteristics, the transition is said to be allowed. If they do not, the transition 
is forbidden. 

he selection rules are derived from specific idealized theoretical models of the ab- 
orption process. It often happens that the ground- and excited-state wavefunctions are not 
the sumple ones assumed in theoretical treatments. In such cases, "forbidden" transitions 
are often observed. However, forbidden transitions have low probability and, conse quently, their observed intensities are generally low. 

The model for absorption of electromagnetic radiation which is most often applicable 
in spectroscopy is the electric dipole model. In this model, radiation absorption is accomn- 
panied by a change in the electric dipole moment of the molecule, and the intensity of an 

clectronic transition is proportional to the dipole strength, D. The dipole strength is the 
square of an integral involving the wavefunctions for the ground and excited states and an 
operator called the dipole moment vector; dr is a volume element. 

D ground (operator)/exeited dr| (10.6) 

The operator (the dipole moment vector) transforms as a vector having components in the 
, y, and z directions and thus has the form ax +by + cz. 

LaPorte's Rule 

A couple of generally applicable selection rules can be derived from Equation (10.6). La- Porte's Rule states that in centrosymmetric environments, transitions can occur only be- 
tween states of opposite parity (u> g or g> u). This means that d -p, s> p, and so 
on, are allowed, but not d> d, s>d, and so on. Transitions allowed by LaPorte's rule 
are quite intense, having e 10,000. 

That Equation (10.6) leads to LaPorte's rule can be demonstrated readily. The dipole mo- 
ment operator transforms as x, y, and z which in any centrosymmetric point group must be odd (u). The product of the operator and the wavefunctions in the integral must be g if the integral is not to equal zero. [The integral of an odd (u) function vanishes when integrated over all space because the positive and negative portions cancel one another.] Thus, even products result from g X g= g and u Xu = 8, but an odd product results from g X 

u = u. These dictate that because the operator is odd (or u), the integrand is g only if the product of the wavefunctions is also u. This is, the basis for LaPorte's rule. 
Actually, the selection rules are even more restrictive than this. The function involved in the integral must not only be even, it must be totaly symmetric-it must belong to the totally symmetric representation (Ag for the 0; case). The product of two representations 
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is Ai (or contains Ai for a reducible representation) only if the two representations are 

identical. Therefore, the product of the representations for the ground and excited states 

(this product is called the symmetry of the transition) must belong to the same repre sen tation as that of one of the vectors x, y, and z. This provides a basis for detailed assign- 
ments of transitions. 

Transitions involving only d orbitals (d> d transitions) are La Porte-forbidden in cen- 
trosymmetric point groups; yet, as we shall soon see, they do appear-however, with in- 
tensities (e = 5-100) that are only about 102 of allowed transitions. The intensity-giving mechanism is the so-called vibronic mechanism which relaxes partially LaPorte's rule 
for complexes. A vibration of odd parity (e.g., Ti.) distorts an octahedron, for example, destroying the center of symmetry so that the g and u designations are not applicable dur- 
ing the time required for the transition and allows mixing of d and p orbitals. The vibra- tional and electronic transitions are coupled (vibronic). Because the energy contribution 
of the vibrational part of the transition is so much less than that of the electronic transi- 
tion, the energies of the absorptions may be related to differences in electronic energy lev- 
els alone. 

If a complex lacks a center of inversion, then the gerade and ungerade labels no 
longer have meaning. LaPorte's rule might not be expected to apply to tetrahedral com- 
plexes or to trigonal bipyramidal complexes that are noncentrosymmetric. Indeed, such 
complexes show more intense d d absorptions (e 100-200) than do octahedral 
complexes, but they are still much weaker than LaPorte-allowed transitions. 

Spin Selection Rule 

A second selection rule is the spin selection rule, which states that tran_itions may occur 

only between energy states with the same spin multiplicity. That this should be so is not 
obvious from the general form of the integral in Equation (10.6). However, it can be 
shown that the integral should vanish unless the spin function of both gound and Yexcited 
are the same. Allowed transitions involve promotion of electrons without change of spin. 
Spin-forbidden transitions are less intense (e = 10- 1) than those of spin-allowed 
transitions. The fact that they are seen at all is because the wavefunctions are often not as 
simple as those corresponding to Russell-Saunders coupling which have well-defined val- ues of S. In particular, the j-j coupling scheme (page 37), which applies especially to the 
heavier elements, mixes the orbital and spin-angular momentum through so-called spin-
orbit coupling to yield states of the same total angular momentum made up partly of or- 
bital and partly of spin contributions. Thus, the spin function is no longer separable and 
well-defined; that is, the experimental situation does not fully correspond to the assump- 
tion of definite values for S. This effect becomes more important for the heavier elements 
of the second and third transition series. Hence, spin-forbidden transitions become more 
common for complexes of these complexes. Spin-orbit coupling makes the interpretation 
using Russell-Saunders coupling for the free-ion states (which we assume in examples 
used here) less reliable and thus introduces greater uncertainty in the prediction of spectra 
for these elements. 
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