
JVM Working and Architecture
JVM(Java Virtual Machine) acts as a run-time engine to run Java applications. JVM
is the one that actually calls the main method present in a java code. JVM is a part
of JRE(Java Runtime Environment).
Java applications are called WORA (Write Once Run Anywhere). This means a
programmer can develop Java code on one system and can expect it to run on any
other Java enabled system without any adjustment. This is all possible because of
JVM.

When we compile a .java file, .class files(contains byte-code) with the same class
names present in .java file are generated by the Java compiler. This .class file goes
into various steps when we run it. These steps together describe the whole JVM.

Class Loader Subsystem
It is mainly responsible for three activities.

 Loading
 Linking
 Initialization

Loading : The Class loader reads the .class file, generate the corresponding binary
data and save it in method area. For each .class file, JVM stores following
information in method area.

 Fully qualified name of the loaded class and its immediate parent class.
 Whether .class file is related to Class or Interface or Enum
 Modifier, Variables and Method information etc.

After loading .class file, JVM creates an object of type Class to represent this file in
the heap memory. Please note that this object is of type Class predefined
in java.lang package. This Class object can be used by the programmer for getting
class level information like name of class, parent name, methods and variable
information etc. To get this object reference we can use getClass() method
of Object class.

// A Java program to demonstrate working of a Class type
// object created by JVM to represent .class file in
// memory.
import java.lang.reflect.Field;
import java.lang.reflect.Method;

// Java code to demonstrate use of Class object
// created by JVM
public class Test
{
 public static void main(String[] args)
 {
 Student s1 = new Student();

https://www.geeksforgeeks.org/object-class-in-java/

 // Getting hold of Class object created
 // by JVM.
 Class c1 = s1.getClass();

 // Printing type of object using c1.
 System.out.println(c1.getName());

 // getting all methods in an array
 Method m[] = c1.getDeclaredMethods();
 for (Method method : m)
 System.out.println(method.getName());

 // getting all fields in an array
 Field f[] = c1.getDeclaredFields();
 for (Field field : f)
 System.out.println(field.getName());
 }
}

// A sample class whose information is fetched above using
// its Class object.
class Student
{
 private String name;
 private int roll_No;

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public int getRoll_no() { return roll_No; }
 public void setRoll_no(int roll_no) {
 this.roll_No = roll_no;
 }
}

Output:

Student

getName

setName

getRoll_no

setRoll_no

name

roll_No

Note : For every loaded .class file, only one object of Class is created.
Student s2 = new Student();

// c2 will point to same object where

// c1 is pointing

Class c2 = s2.getClass();

System.out.println(c1==c2); // true

Linking : Performs verification, preparation, and (optionally) resolution.
 Verification : It ensures the correctness of .class file i.e. it check whether this

file is properly formatted and generated by valid compiler or not. If verification
fails, we get run-time exception java.lang.VerifyError.

 Preparation : JVM allocates memory for class variables and initializing the
memory to default values.

 Resolution : It is the process of replacing symbolic references from the type
with direct references. It is done by searching into method area to locate the
referenced entity.

Initialization : In this phase, all static variables are assigned with their values
defined in the code and static block(if any). This is executed from top to bottom in a
class and from parent to child in class hierarchy.
In general, there are three class loaders :

 Bootstrap class loader : Every JVM implementation must have a bootstrap
class loader, capable of loading trusted classes. It loads core java API classes
present in JAVA_HOME/jre/lib directory. This path is popularly known as
bootstrap path. It is implemented in native languages like C, C++.

 Extension class loader : It is child of bootstrap class loader. It loads the
classes present in the extensions directories JAVA_HOME/jre/lib/ext(Extension
path) or any other directory specified by the java.ext.dirs system property. It is
implemented in java by the sun.misc.Launcher$ExtClassLoader class.

 System/Application class loader : It is child of extension class loader. It is
responsible to load classes from application class path. It internally uses
Environment Variable which mapped to java.class.path. It is also implemented
in Java by the sun.misc.Launcher$AppClassLoader class.

// Java code to demonstrate Class Loader subsystem
public class Test
{
 public static void main(String[] args)
 {
 // String class is loaded by bootstrap loader, and
 // bootstrap loader is not Java object, hence null
 System.out.println(String.class.getClassLoader());

 // Test class is loaded by Application loader
 System.out.println(Test.class.getClassLoader());
 }
}

Output:

null

sun.misc.Launcher$AppClassLoader@73d16e93

Note : JVM follow Delegation-Hierarchy principle to load classes. System class
loader delegate load request to extension class loader and extension class loader
delegate request to boot-strap class loader. If class found in boot-strap path, class is
loaded otherwise request again transfers to extension class loader and then to
system class loader. At last if system class loader fails to load class, then we get
run-time exception java.lang.ClassNotFoundException.

JVM Memory
Method area :In method area, all class level information like class name, immediate
parent class name, methods and variables information etc. are stored, including
static variables. There is only one method area per JVM, and it is a shared resource.
Heap area :Information of all objects is stored in heap area. There is also one Heap
Area per JVM. It is also a shared resource.
Stack area :For every thread, JVM create one run-time stack which is stored here.
Every block of this stack is called activation record/stack frame which store methods
calls. All local variables of that method are stored in their corresponding frame. After
a thread terminate, it’s run-time stack will be destroyed by JVM. It is not a shared
resource.
PC Registers :Store address of current execution instruction of a thread. Obviously
each thread has separate PC Registers.
Native method stacks :For every thread, separate native stack is created. It stores
native method information.

Execution Engine
Execution engine execute the .class (bytecode). It reads the byte-code line by line,
use data and information present in various memory area and execute instructions.
It can be classified in three parts :-

 Interpreter : It interprets the bytecode line by line and then executes. The
disadvantage here is that when one method is called multiple times, every time
interpretation is required.

 Just-In-Time Compiler(JIT) : It is used to increase efficiency of interpreter.It
compiles the entire bytecode and changes it to native code so whenever
interpreter see repeated method calls,JIT provide direct native code for that
part so re-interpretation is not required,thus efficiency is improved.

 Garbage Collector : It destroy un-referenced objects.For more on Garbage
Collector,refer Garbage Collector.

https://www.geeksforgeeks.org/garbage-collection-java/

	JVM Working and Architecture

