
Input/output

Java I/O is a powerful concept, which provides the all input and output
operations. Most of the classes of I/O streams are available in java.io
package.

Stream

Stream is the logical connection between Java program and file. In Java,
stream is basically a sequence of bytes, which has a continuous flow
between Java programs and data storage.

Types of Stream

Stream is basically divided into following types based on data flow direction.

Input Stream
Input stream is represented as an input source. It is used to read the binary
data from the source.

Output Stream
Output stream represent a destination source. It is basically used to send
out/write the data to destination.

Byte Streams
Byte stream is used to input and output to perform 8-bits bytes. It has the
classes like FileInputStream and FileOutputStream.

Character Streams
Character stream basically works on 16 bit-Unicode value convention. This
stream is used to read and write data in the format of 16 bit Unicode
characters.

Read and Write the Files

In Java, InputStream and Reader classes have read () method which is
used to read the data from a source.
OutputStream and Writer classes have write () method which is used to
write the data on the destination.

FileInputStream

FileInputStream class is used to read the data from file. It is meant for
reading streams of raw byte. The FileInputStream class provides the
connection to a disk file.

FileInputStream Constructors

Constructors Description

FileInputStream(File file) It creates a FileInputStream by opening a

connection to

a file.

FileInputStream(FileDescriptor

fdobj)

Creates a FileInputStream by using the

FileDescriptor

object fdobj.

FileInputStream(String name) Creates a FileInputStream by opening a connection

to a file.

FileInputStream Methods

Method Description

public int available() throw IOException Returns an approximation of the

number of bytes

 that can be read from this file input

stream.

public void close() throws IOException Close the input stream file and releases

the

system resources.

protected void finalize () Make sure that close () method of this

input

 stream is called properly.

public FileChannel getChannel() Return the unique object of

FileChannel.

public final FileDescriptor getFD() throws

IOException

Returns the FileDescriptor object that

represents

the connection to the actual file.

public int read(byte[] b) throws

IOException

Read the data from the given input

stream in

the form of an array of bytes.

public log skip(long n) throws IOException Skip or discard the n bytes of data

from

the input stream.

Example: Reading the data from the File using
FileInputStream

//abc.txt

ABCabc

//FISDemo.java

import java.io.*;

public class FISDemo

{

 public static void main(String args[])throws FileNotFoundException,

IOException

 {

 FileInputStream fi = new FileInputStream("abc.txt");

 int i;

 System.out.println("ASCII value of the character:");

 while((i=fi.read()) != -1)

 {

 System.out.print(i+" : ");

 System.out.println((char)i);

 }

 }

}

Output:
ASCII value of the character:
65 : A
66 : B
67 : C
97 : a
98 : b
99 : c

Example: Reading the data from the File using
FileInputStream

import java.io.*;

class FileInputStreamDemo

{

 public static void main(String args[])throws IOException

 {

 FileInputStream fis = new

FileInputStream("FileInputStreamDemo.java");

 System.out.println("Available bytes: "+(fis.available()));

 byte arr[] = new byte[50];

 if (fis.read(arr) != 50)

 {

 System.out.println("Could not get 50 bytes");

 }

 System.out.println(new String(arr, 0, 50));

 fis.skip(50);

 if (fis.read(arr) != 50)

 {

 System.out.println("Could not get 50 bytes:");

 }

 System.out.println(new String(arr, 0, 50));

 fis.close();

 }

}

FileOutputStream

The FileInputStream class is sub class of OutputStream class. This class is
used for writing the data to a File.

FileOutputStream Constructors

Constructors Descriptions

FileOutputStream (File file) Creates a file output stream to write to the file by

specified file object.

FileOutputStream (File file,

boolean append)

It creates file output stream to write to the file,

represent by File object.

FileOutputStream

(FileDescriptor, fd)

Creates a file input to write to the specified file

descriptor.

FileOutputStream (String

name)

Creates a file output stream with specified name.

FileOutputStream Methods

Method Description

public void write(int b) throws

IOException

Writes the specified byte in the OutputStream.

public void write(byte[] b)

throws IOException

Writes the specified byte in the OutputStream.

public void close() throws

IOException

This method is used to close the output stream.

protected void finalize()

throws IOException

This method provides the cleanup to the file.

public void getChannel() It returns the unique FileChannel object associated

with this file output stream.

Example: Reading the data from a file and writing it to
same file

import java.io.*;

public class FileDemo

{

 public static void main(String args[])

 {

 int i;

 FileInputStream fis;

 FileOutputStream fos;

 try

 {

 fis = new FileInputStream(args[0]);

 fos = new FileOutputStream(args[1]);

 do

 {

 i = fis.read();

 if(i!=-1)

 fos.write(i);

 }

 while(i!=-1);

 }

 catch(Exception exp)

 {

 exp.getMessage();

 }

 }

}

	Input/output
	Stream
	Types of Stream
	Read and Write the Files
	FileInputStream
	FileInputStream Constructors
	FileInputStream Methods
	Example: Reading the data from the File using FileInputStream
	Example: Reading the data from the File using FileInputStream

	FileOutputStream
	FileOutputStream Constructors
	FileOutputStream Methods
	Example: Reading the data from a file and writing it to same file

