
Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there
are  many  classes  related  to  byte  streams  but  the  most  frequently  used  classes
are, FileInputStream and FileOutputStream.  Following is an example which makes
use of these two classes to copy an input file into an output file −

Example

import java.io.*;
public class CopyFile {

   public static void main(String args[]) throws IOException {  
      FileInputStream in = null;
      FileOutputStream out = null;

      try {
         in = new FileInputStream("input.txt");
         out = new FileOutputStream("output.txt");
         
         int c;
         while ((c = in.read()) != -1) {
            out.write(c);
         }
      }finally {
         if (in != null) {
            in.close();
         }
         if (out != null) {
            out.close();
         }
      }
   }
}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating
output.txt file with the same content as we have in input.txt. So let's put the above code
in CopyFile.java file and do the following −

$javac CopyFile.java
$java CopyFile



Character Streams

Java Byte streams  are  used  to  perform  input  and  output  of  8-bit  bytes,  whereas
Java Character streams  are  used  to  perform  input  and  output  for  16-bit  unicode.
Though there are many classes related to character streams but the most frequently
used  classes  are, FileReader and FileWriter.  Though  internally  FileReader  uses
FileInputStream and FileWriter uses FileOutputStream but here the major difference is
that FileReader reads two bytes at a time and FileWriter writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to copy
an input file (having unicode characters) into an output file −

Example

import java.io.*;
public class CopyFile {

   public static void main(String args[]) throws IOException {
      FileReader in = null;
      FileWriter out = null;

      try {
         in = new FileReader("input.txt");
         out = new FileWriter("output.txt");
         
         int c;
         while ((c = in.read()) != -1) {
            out.write(c);
         }
      }finally {
         if (in != null) {
            in.close();
         }
         if (out != null) {
            out.close();
         }
      }
   }
}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating
output.txt file with the same content as we have in input.txt. So let's put the above code
in CopyFile.java file and do the following −

$javac CopyFile.java
$java CopyFile


	Byte Streams
	Character Streams

