
Decision Tree 

Decision Tree Analysis is a general, predictive modelling tool that has applications 

spanning a number of different areas. In general, decision trees are constructed via 

an algorithmic approach that identifies ways to split a data set based on different 

conditions. It is one of the most widely used and practical methods for supervised 

learning. Decision Trees are a non-parametric supervised learning method used for 

both classification and regression tasks. The goal is to create a model that predicts 

the value of a target variable by learning simple decision rules inferred from the 

data features. 

The decision rules are generally in form of if-then-else statements. The deeper the 

tree, the more complex the rules and fitter the model. 

Before we dive deep, let's get familiar with some of the terminologies: 

• Instances: Refer to the vector of features or attributes that define the input 

space 

• Attribute: A quantity describing an instance 

• Concept: The function that maps input to output 

• Target Concept: The function that we are trying to find, i.e., the actual 

answer 



• Hypothesis Class: Set of all the possible functions 

• Sample: A set of inputs paired with a label, which is the correct output (also 

known as the Training Set) 

• Candidate Concept: A concept which we think is the target concept 

• Testing Set: Similar to the training set and is used to test the candidate 

concept and determine its performance 

Introduction 

A decision tree is a tree-like graph with nodes representing the place where we 

pick an attribute and ask a question; edges represent the answers the to the 

question; and the leaves represent the actual output or class label. They are used in 

non-linear decision making with simple linear decision surface. 

Decision trees classify the examples by sorting them down the tree from the root to 

some leaf node, with the leaf node providing the classification to the example. 

Each node in the tree acts as a test case for some attribute, and each edge 

descending from that node corresponds to one of the possible answers to the test 

case. This process is recursive in nature and is repeated for every subtree rooted at 

the new nodes. 



Let's illustrate this with help of an example. Let's assume we want to play 

badminton on a particular day — say Saturday — how will you decide whether to 

play or not. Let's say you go out and check if it's hot or cold, check the speed of the 

wind and humidity, how the weather is, i.e. is it sunny, cloudy, or rainy. You take 

all these factors into account to decide if you want to play or not. 

So, you calculate all these factors for the last ten days and form a lookup table like 

the one below. 

Day Weather Temperature Humidity Wind Play? 

1 Sunny Hot High Weak No 

2 Cloudy Hot High Weak Yes 

3 Sunny Mild Normal Strong Yes 

4 Cloudy Mild High Strong Yes 

5 Rainy Mild High Strong No 



Day Weather Temperature Humidity Wind Play? 

6 Rainy Cool Normal Strong No 

7 Rainy Mild High Weak Yes 

8 Sunny Hot High Strong No 

9 Cloudy Hot Normal Weak Yes 

10 Rainy Mild High Strong No 

Table 1. Obeservations of the last ten days. 

Now, you may use this table to decide whether to play or not. But, what if the 

weather pattern on Saturday does not match with any of rows in the table? This 

may be a problem. A decision tree would be a great way to represent data like this 

because it takes into account all the possible paths that can lead to the final 

decision by following a tree-like structure. 



 Fig 1. A decision tree for the concept Play Badminton 

Fig 1. illustrates a learned decision tree. We can see that each node represents an 

attribute or feature and the branch from each node represents the outcome of that 

node. Finally, its the leaves of the tree where the final decision is made. If features 

are continuous, internal nodes can test the value of a feature against a threshold 

(see Fig. 2). 



 Fig 2. A decision tree for the concept Play Badminton (when attributes are 

continuous) 

A general algorithm for a decision tree can be described as follows: 

1. Pick the best attribute/feature. The best attribute is one which best splits or 

separates the data. 

2. Ask the relevant question. 

3. Follow the answer path. 



4. Go to step 1 until you arrive to the answer. 

The best split is one which separates two different labels into two sets. 

Advantages and Disadvantages 

Following are the advantages of decision trees: -  

• Easy to use and understand. 

• Can handle both categorical and numerical data. 

• Resistant to outliers, hence require little data preprocessing.  

• New features can be easily added. 

• Can be used to build larger classifiers by using ensemble methods. 

Following are the disadvantages of decision trees: 

• Prone to overfitting. 

• Require some kind of measurement as to how well they are doing. 

• Need to be careful with parameter tuning. 

• Can create biased learned trees if some classes dominate. 

 


