
Pincer-Search Algorithm for Discovering Maximum Frequent Set

Introduction

Pincer Search Algorithm was proposed by, Dao-I Lin & Zvi M. Kedem of

New York University in 1997. This algorithm uses both, the top-down and

bottom-up approaches to Association Rule mining. It is a slight modification

to Original Apriori Algorithm by R. Aggarwal & Srikant. In this the main

search  direction  is  bottom-up  (same  as  Apriori)  except  that  it  conducts

simultaneously  a  restricted  top-down  search,  which  basically  is  used  to

maintain  another  data  structure  called  Maximum Frequent  Candidate  Set

(MFCS).  As  output  it  produces  the  Maximum  Frequent  Set  i.e.  the  set

containing  all  maximal  frequent  itemsets,  which  therefore  specifies

immediately all frequent itemsets. The algorithm specializes in dealing with

maximal frequent itemsets of large length. The authors got their inspiration

from the notion of version space in Mitchell’s machine learning paper.

Concepts used:

Let I = (i1, i2, , im) be a set of m distinct items.

Transaction: A transaction T is defined as any subset of items in I.

Database: A database D is a set of transactions.



Itemset: A set of items is called an Itemset.

Length of Itemset: is the number of items in the itemset. Itemsets of length

‘k’ are referred to as k-itemsets.

Support  Count:  It  is  the  total  frequency  of  appearance  of  a  particular

pattern in a database. 

In other terms: If T is a transaction in database D and X is an itemset then T

is  said  to  support X,  if  X   T,  hence  support  of  X  is  the  fraction  of

transactions that support X.

Frequent Itemset: An itemset whose support count is greater than or equal

to the minimum support threshold specified by the user.

Infrequent Itemset: An itemset which is not frequent is infrequent.

Downward Closure Property (Basis for Top-down Search): states that “If

an itemset is frequent then all its subsets must be frequent.”

Upward Closure Property (Basis for Bottom-up Search): states that “If an

itemset is infrequent then all its supersets must be infrequent.”

Maximal Frequent Set: it is a set, which is frequent and so are all its proper

subsets. All its proper supersets are infrequent.

Maximum Frequent Set: is the set of all Maximal Frequent sets.



Association Rule: is the rule of the form R : X  Y, where X and Y are two

non-empty and non-intersecting itemsets.  Support for rule R is defined as

support of X Y. Confidence is defined as Support of X Y / Support of X.

Interesting Association Rule: An association rule is said to be interesting if

its support and confidence measures are equal to or greater than minimum

support and confidence thresholds (specified by user) respectively.

Candidate  Itemsets:  It  is  a  set  of  itemsets,  which  are  to  be  tested  to

determine whether they are frequent or infrequent.

Maximum Frequent Candidate Set (MFCS): is a minimum cardinality set

of itemsets such that the union of all the subsets of elements contains all

frequent itemsets  but  does not  contain any infrequent itemset,  i.e.  it  is  a

minimum cardinality set satisfying the conditions:

FREQUENT  { 2X | X  MFCS}

      INFREQUENT  { 2X | X  MFCS} 

Where FREQUENT and INFREQUENT, stand respectively for all frequent

and infrequent items (classified as such as far).



Pincer-Search Method

Pincer Search combines the following two approaches:

Bottom-up: Generate subsets and go on to generating parent-set candidate

sets using frequent subsets.

Top-Down: Generating parent set and then generating subsets.

It also uses two special properties:

Downward Closure Property: If an itemset is frequent, then all its must be

frequent.

Upward Closure Property: If an itemset is infrequent, all its supersets must

be infrequent.

 It uses the above two properties for pruning candidate sets, hence decreases

the computation time considerably. 

It uses both approaches for pruning in following way: 

If some maximal frequent itemset is found in the top down direction, then

this  itemset  can  be  used  to  eliminate  (possibly  many)  candidates  in  the

bottom-up direction. The subsets of this frequent itemset will be frequent

and hence can be pruned (acc. to Downward closure property).

If  an  infrequent  itemset  is  found  in  the  bottom  up  direction,  then  this

infrequent itemset can be used to eliminate the candidates found in top-down

search found so far (acc. to Upward Closure Property).



This two-way approach makes use of both the properties and speeds up the

search for maximum frequent set.

The algorithm begins with generating 1-itemsets as Apriori algorithm but

uses top-down search to prune candidates produced in each pass.  This is

done with the help of MFCS set.

Let MFS denote set of Maximal Frequent sets storing all maximally frequent

itemsets  found during the execution.  So at  anytime during the execution

MFCS  is  a  superset  of  MFS.  Algorithm terminates  when  MFCS  equals

MFS.

In each pass over database, in addition to counting support counts of

candidates  in  bottom-up  direction,  the  algorithm also  counts  supports  of

itemsets in MFCS: this set is adapted for top-down search. 

Consider now some pass k, during which itemsets of size k are to be

classified. If some itemset that is an element of MFCS, say X of cardinality

greater than k is found to be frequent in this pass, then all its subsets will be

frequent.  Then all  its  subsets  of  cardinality k are  pruned from the set  of

candidates considered in bottom-up approach in this pass.  They and their

supersets  will  never be candidates again.  But,  they are not  forgotten and

used in the end.



Similarly when a new itemsets is found to infrequent in bottom-up

direction, the algorithm makes use of it to update MFCS, so that no subset of

any itemset in MFCS should have this infrequent itemset as its subset.

By  use  of  MFCS  maximal  frequent  sets  can  be  found  early  in

execution and hence improve performance drastically.

Note: In general, unlike the search in bottom-up direction, which goes up

one level in one pass, the top down search can go down many levels in one

pass.

Now let’s see algorithmic representation of Pincer search so that we can see

how above concepts are applied:

Pincer Search Method

L0 =  ; k=1; C1 = {{i} | i  I }; S0 = 

MFCS = {{ 1,2,, n}}; MFS =  ;

do until Ck =  and Sk-1 = 

read the database and count support for Ck & MFCS.

MFS = MFS  {frequent itemsets in MFCS};

Sk = {infrequent itemsets in Ck };



call MFCS_gen algorithm if Sk  ;

call MFS_pruning procedure;

generate candidates Ck+1 from Ck ;

if any frequent itemset in Ck is removed from MFS_pruning procedure

call recovery procedure to recover candidates to Ck+1 .

call MFCS_prune procedure to prune candidates in Ck+1 .

k=k+1;

return MFS

MFCS_gen

for all itemsets s  Sk 

for all itemsets m  MFCS

if s is a subset of m

MFCS = MFCS \ {m}

for all items e  itemset s

if m \ {e} is not a subset of any itemset in MFCS

MFCS =  MFCS  {m \ {e}}

return MFCS

Recovery



for all itemsets l  Lk 

for all itemsets m  MFS

if the first k-1 items in l are also in m

for i from j+1 to |m|

Ck+1 = Ck+1  {{l.item1, , l.itemk, m.itemi}}

MFS_prune

for all itemsets c in Lk

if c is a subset of any itemset in the current MFS

delete c from Lk.

MFCS_prune

for all itemsets in Ck+1

if c is not a subset of any itemset in the current MFCS

delete c from Ck+1;

MFCS  is  initialized  to  contain  one  itemset,  which  contains  all  of  the

database  items.  MFCS is  updated  whenever  new infrequent  itemsets  are

found.  If  an  itemset  is  found  to  be  frequent  then  its  subsets  will  not

participate in subsequent support counting and candidate generation steps. If



some  itemsets  in  Lk are  removed,  the  algorithm  will  call  the  recovery

procedure to recover missing candidates. 

Let’s apply this algorithm to the following example:

Example :1 - Customer Basket Database

Transaction                Products

1 Burger, Coke, Juice

2 Juice, Potato Chips

3 Coke, Burger

4 Juice, Groundnuts

5 Coke, Groundnuts

Step 1: L0 =  , k=1;

C1 = {{ Burger},  {Coke}, {Juice}, {Potato Chips}, {Ground Nuts}}

MFCS = {Burger, Coke, Juice, Potato Chips, Ground Nuts}

MFS =  ;

Pass 1: Database is read to count support as follows:



{Burger}2,  {Coke}3,  {Juice} 3,  {Potato  Chips}1,  {Ground

Nuts}2

{Burger, Coke, Juice, Potato Chips, Ground Nuts}  0

So MFCS = {Burger, Coke, Juice, Potato Chips, Ground Nuts}

& MFS = ;

L1 = {{Burger}, {Coke}, {Juice}, {Potato Chips}, {Ground Nuts}}

S1 = 

At the moment since S1 =  we don’t need to update MFCS

C2 = {{Burger, Coke}, {Burger, Juice}, {Burger, Potato Chips}, {Burger,

Ground Nuts}, {Coke, Juice}, {Coke, Potato Chips}, {Coke, Ground Nuts},

{Juice, Potato Chips}, {Juice, Ground Nuts}, {Potato Chips, Ground Nuts}}

Pass 2: Read database to count support of elements in C2 & MFCS as given

below:

{Burger, Coke}  2, {Burger, Juice}1,

{Burger, Potato Chips}0, {Burger, Ground Nuts}0,

{Coke, Juice}1, {Coke, Potato Chips}0,

{Coke, Ground Nuts}1, {Juice, Potato Chips}1,

{Juice, Ground Nuts}1, {Potato Chips, Ground Nuts}0

{Burger, Coke, Juice, Potato Chips, Ground Nuts}0

MFS =  



L2 =  {{Burger,  Coke},  {Burger,  Juice},  {Coke,  Juice},  {Coke,  Ground

Nuts}, {Juice, Ground Nuts}, {Juice, Potato Chips}}

S2 =  {{Burger,  Potato  Chips},  {Burger,  Ground  Nuts},  {Coke,  Potato

Chips}, {Potato Chips, Ground Nuts}}

For {Burger, Potato Chips} in S2 and for {Burger, Coke, Juice, Potato Chips,

Ground Nuts} in MFCS, we get new elements in MFCS as

{Burger,  Coke  ,  Juice,  Ground  Nuts}  and  {Coke,  Juice,  Potato  Chips,

Ground Nuts}

For {Burger, Ground Nuts} in S2 & for {Coke, Juice, Potato Chips, Ground

Nuts}  in  MFCS,  since  {Burger,  Ground  Nuts}  is  not  contained  in  this

element of MFCS hence no action.

For {Burger, Coke, Juice, Ground Nuts} in MFCS we get two new elements

{Burger, Coke, Juice} & {Coke, Juice, Ground Nuts}

Since  {Coke,  Juice,  Ground  Nuts}  is  already  contained  in  MFCS,  it  is

excluded from MFCS

Now, MFCS = {{Burger, Coke, Juice}, {Coke, Juice, Potato Chips, Ground

Nuts}}

Now, for {Coke, Potato Chips} in S2 , we get 



MFCS  =  {{Burger,  Coke,  Juice},  {Coke,  Juice,  Ground  Nuts},  {Potato

Chips, Juice, Ground Nuts}}

Now, for {Potato Chips, Ground Nuts} in S2, we get

MFCS  =  {{Burger,  Coke,  Juice},  {Coke,  Juice,  Ground  Nuts},  {Potato

Chips, Juice}}

Now, we generate candidate sets as 

C3 = {{Burger, Coke, Juice}, {Potato Chips}}

Here algorithm stops since no more candidates need to be tested.

Then we do one scan for calculating actual support counts of all maximally

frequent itemsets and their subsets. Then we go on to generate rules using

minimum confidence threshold to get all interesting rules.
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