

PARTITION ALGORITHM APPROACH FOR

MINING FREQUENT PATTERN

 Mining Frequent Patterns using Partition Algorithm

A partition concept has been proposed to increase the execution speed with

minimum cost. For each itemsets, that is one itemset, 2-itemsets, 3-itemsets etc., a

separate partition will be created during data insertion in to the table. Initially a set of

frequent 1-itemsets is found by scanning the databases and get the numbers of

occurrences of each item from the partition of those particular items using the pointer,

the items satisfying the minimum support count will be included in the frequent 1-

itemsets L1. Like Apriori algorithm L1 is used to find L2, the set of L2 is used to find

L3, and so on, until no more frequent k-itemsets can be found.

To find, Lk, it is not necessary to scan the full database; it is enough to

search the count of each data itemsets from its partition. Initially to generate

frequent itemsets, an important property called the Apriori property used for

reducing the search space. Join and Prune are two-steps to find the frequent

itemsets. In join, Lk is find from a set of candidate k-item sets Ck which is generated

by joining Lk-1 with itself.

In pruning, to find the count of each candidate in Ck, the partition of

each itemsets will be checked and the count which is not less than minimum support

count are frequent and belongs to Lk. To reduce the size of Ck, the apriori property

is used. The performance of partition algorithm for finding the frequent data items

is efficient when compared to other existing Algorithms.

Table : Transaction Database for Partition Algorithm

TID List of Items

T1 I1, I2, I4

T2 I2, I4

T3 I3, I4

T4 I1, I2, I5

T5 I1, I4

T6 I1, I3, I5

T7 I1, I2 ,I3, I5

T8 I1, I2, I3

Consider the Database D, with seven transactions, here partitioning has

been used to store and retrieve the data from the database. Different types of

partitioning techniques are available, in this thesis; range partitioning has been used

to increase the performance when mining the frequent patterns in the database.

Tabl shows a transaction database for partition algorithm and it contains

8 transactions. In this table, transaction T1 contains I1,I2,I3 and transaction T2

contains I2, I4 and so on..

From the candidate 1 itemset C1 generate the frequency 1 itemset L1 by

calculating the no of occurrences of the data items directly from the partition

instead of scanning the whole database. Here the minimum support count taken is

2. Candidate 1 itemset which is satisfying the minimum support count will be

include in L1. The following figure. shows, the generation of candidate 1 itemsets

and frequent 1 itemsets.

Figure Generation of Frequent 1- Itemset using Partition Algorithm

The candidate 2 itemsets are generated by joining L1 by itself and check

whether the subset of the frequent itemsets are also frequent, since in L1 all the

items have been included, there will be no pruning.

For calculating the support count, instead of scanning the whole

database, it is enough to get the count from the appropriate partition. The candidate

2 itemsets which is satisfying the minimum support count will be included in the

frequent 2 itemsets L2. The following figure shows the generation of frequent 2

itemsets using partition. Finally 8 frequent 2 itemsets have been generated, and this

has been used to generate the candidate 2 itemsets.

Figure Generation of Frequent 2- Itemset using Partition Algorithm

The candidate 3 itemsets are generated by joining L2 by itself and find

whether the subset of the frequent itemsets are also frequent, only the itemsets

{I1,I2,I4},{I1,I2,I5},{I1,I2,I3} and {I1,I3,I5} have been included for the next step

that is considered as candidate 3 itemsets since whose subset is also a frequent

itemset.

The remaining itemsets have been removed because whose subset is not

frequent one. For calculating the support count, instead of scanning the whole

database, it is enough to get the count from the appropriate partition. The candidate

3 itemsets which is satisfying the minimum support count will be included in the

frequent 3 itemsets L3.

The following figure shows the generation of frequent 3 itemsets using

partition. Finally 3 frequent 3 itemsets have been generated, and this has been used

to generate the candidate 3 itemsets.

Figure Generation of Frequent 3 - Itemset using Partition Algorithm

The candidate 4 itemsets are generated by joining L3 by itself and check

whether the subset of the frequent itemsets are also frequent, only the itemsets

{I1,I2,I3,I5}have been included for the next step that is considered as candidate 4

itemsets since whose subset is also a frequent itemset.

For calculating the support count, directly get the count from the

partition, instead of scanning the whole database. Since the support count is 1,

which is not satisfying the minimum support, it is pruned and L4 = ¢ and algorithm

terminates. With the frequent 3 itemsets, association rule is applied which shows

the association between the data items.

 Implementation and Result

The partition algorithm has been implemented using PL/SQL in Oracle

Database and then compared with Apriori algorithm. Table 6.2 shows the

performance evaluation between Apriori and Partition algorithm. The algorithms

are compared with different sets of record like 1000, 2500, 5000 etc.

Table Performance Evaluation of Apriori and Partition

 TOTAL NO OF RECORDS

ALGORITHMS

 1000 2500 5000 10000 20000 30000

APRIORI 8 min 20 min 42 min 86min 178 min 264min

PARTITION 30 sec 1.5 min 3 min 6 min 13 min 19 min

When the no of records is 1000, the Apriori algorithm takes 8 minutes

and partition algorithm takes 30 secs to find the frequent data items sets. When the

total no of records is 2500, the partition algorithm has taken 1.5 min and Apriori

algorithm taken 20 min and when the total no of records is 5000, Apriori algorithm

taken 42 minutes and partition algorithm takes 3 minutes.

In this way, the partition algorithm has better performance over Apriori

algorithm.

300

250

200

150 Apriori

 Partition

100

50

0
0 10000 20000 30000 40000

Figure Performance Evaluation Graph of Partition Algorithm

Figure shows the generation of frequent itemset and association rule

generation graph and by using the table , graph have been plotted for Apriori and

partition algorithms. In this graph, total no of records has taken in the x-axis, and the

execution time has taken as y-axis. Graphical representation shows, partition algorithm

has efficient performance over the Apriori algorithm.

