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Context-Free Grammars 
 
Read K & S 3.1 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Grammars 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Context-Free Grammars. 
Do Homework 11. 
 

Context-Free Grammars, Languages, and Pushdown Automata 
 
 
                                             Context-Free 
                                             Language 
                                    L  
                                 
     Context-Free 
     Grammar 
 
                                       Accepts 
 
                                              Pushdown 
                                               Automaton 
 
 

Grammars Define Languages 
 
Think of grammars as either generators or acceptors. 
 
Example:  L = {w ∈  {a, b}* : |w| is even} 
 

Regular Expression 
 
   (aa ∪  ab ∪  ba ∪  bb)* 

Regular Grammar 
 S → ε 
 S → aT 
 S → bT 
 T → a 
 T → b 

  T → aS 
  T → bS 

 
Derivation 
  (Generate) 
 
 
 

choose aa 
choose ab 
  yields  
 
 
 a  a  a   b 

     S 
a         T 
        a     S 
             a   T 
                  b 
a      a   a   b 

Parse  (Accept)     use corresponding FSM 
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Derivation is Not Necessarily Unique 
 

Example:  L = {w ∈  {a, b}* : there is at least one a} 
 
Regular Expression 
 
(a ∪  b)*a (a ∪  b)* 
 
choose a from (a  ∪  b) 
choose a from (a  ∪  b) 
choose a 
 
choose a 
choose a from (a  ∪  b) 
choose a from (a  ∪  b)  
 

Regular Grammar 
 
 S → a 
 S → bS 
 S → aS 
 S → aT 
 T → a 
 T → b 
 T → aT 
 T → bT 
 
       S                   S 
    a     S           a     T 
        a    S             a    T 
              a                   a 
 

More Powerful Grammars 
 
Regular  grammars must always produce strings one character at a time, moving left to right. 
 
But sometimes it's more natural to describe generation more flexibly. 
 
Example 1:  L = ab*a 
 

S → aBa 
B → ε 
B → bB 

 
vs. 
 

S → aB 
B → a 
B → bB 

 
Example 2:  L = anb*an 
 

S → B 
S → aSa 
B → ε 
B → bB 

 
Key distinction: Example 1 has no recursion on the nonregular rule. 
 

Context-Free Grammars 
 
Remove all restrictions on the form of the right hand sides. 
 
  S → abDeFGab 
 
Keep requirement for single non-terminal on left hand side. 
 
  S → 
 
 but not  ASB →   or   aSb →    or   ab → 
 
Examples: balanced parentheses   anbn 

 S → ε    S → a S b 
 S → SS    S → ε  
 S → (S) 
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Context-Free Grammars 
 
A context-free grammar G is a quadruple (V, Σ, R, S), where: 
• V is the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do not appear in strings in 

the language) and terminals, 
• Σ (the set of terminals) is a subset of V, 
• R (the set of rules) is a finite subset of (V - Σ) × V*,  
• S (the start symbol) is an element of V - Σ. 
 
x ����G y is a binary relation where x, y ∈  V* such that x = αAβ and y = αχβ  for some rule A→χ in R. 
 
Any sequence of the form 

w0 �G w1 �G w2 �G . . . �G wn 

e.g., (S) � (SS) � ((S)S) 
is called a derivation in G.  Each wi is called a sentinel form. 
 
The language generated by G is   {w ∈  Σ* : S �G* w} 

 
A language L is context free if L = L(G) for some context-free grammar G. 
 

Example Derivations 
 
G = (W, Σ, R, S), where 
 W = {S} ∪  Σ, 
 Σ = {a, b}, 
 R =      { S → a, 
  S → aS, 
  S → aSb} 
 
 
           S                       S 
    a             S                                  a         S                 b 
        a         S           b                                 a     S           b 
               a      S                                            a     S 
                   a  S  b                                             a     S 
                       a                                             a 
 

 
Another Example - Unequal a's and b's 

 
L = {anbm : n ≠ m} 
 
G = (W, Σ, R, S), where 
 W = {a, b, S, A, B}, 
 Σ = {a, b}, 
 R =  
 

S → A   /* more a's than b's 
S → B   /* more b's than a's 
A → a 
A → aA   
A → aAb 
B → b 
B → Bb 
B → aBb 
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English 
  S  → NP  VP 
  NP  → the NP1 | NP1 
  NP1  → ADJ  NP1 | N 
  ADJ → big | youngest | oldest 
  N → boy | boys 
  VP →V | V  NP 
  V → run | runs 

the boys run 
big boys run 
the youngest boy runs 
 
the youngest oldest boy runs 
the boy run 
 
Who did you say Bill saw coming out of the hotel?

 
 

Arithmetic Expressions 
 

The Language of Simple Arithmetic Expressions 
 
G = (V, Σ, R, E), where 
 V = {+, *, id, T, F, E}, 
 Σ = {+, *, id}, 
 R = {  E → id 
  E → E + E 
  E → E * E } 
  
  E         E 
 
 
E  +  E     E  *  E 
 
 
id   E  * E   E +  E   id 
 
 
   id  id   id  id 
 
 
id  +           (id * id)   (id + id) *  id 
 
 

Arithmetic Expressions -- A Better Way 
 
The Language of Simple Arithmetic Expressions 
 
G = (V, Σ, R, E), where 
 V = {+, *, (, ), id, T, F, E}, 
 Σ = {+, *, (, ), id}, 
 R = {  E → E + T 

E→ T 
T → T * F 

  T → F 
F → (E) 

  F → id  }

 
 
Examples: 
 

id + id * id 
 
 
 
id * id * id 

 
 
 
 
 



Lecture Notes 12                                 Context-Free Grammars             5 

BNF 
 
Backus-Naur Form (BNF) is used to define the syntax of programming languages using context-free grammars. 
 
Main idea: give descriptive names to nonterminals and put them in angle brackets. 
 

Example: arithmetic expressions: 
�expression� → �expression� + �term� 
�expression� → �term� 

 �term� → �term� * �factor� 
  �term� → �factor� 

�factor� → (�expression�) 
  �factor� → �id�    
   

 
The Language of Boolean Logic 

G = (V, Σ, R, E), where 
 V = {∧ , ∨ , ¬ ,� , (, ), id, E,  E1, E2, E3, E4  }, 
 Σ = {∧ , ∨ , ¬ , �, (, ), id}, 
 R = {  E → E � E1 
   E → E1 
  E1 → E1 ∨  E2 
  E1 →E2 
  E2 → E2 ∧  E3 
  E2 → E3 
  E3 → ¬  E4 
  E3 → E4 
  E4 →(E) 
  E4 → id   } 
 
 

Boolean Logic isn't Regular 
 
Suppose it were regular.  Then there is an N as specified in the pumping theorem. 

Let w be a string of length 2N + 1 + 2|id| of the form: 
w =     ( ( ( ( ( ( id ) ) ) ) ) ) � id 
                  N 
               x   y 

y = (k for some k > 0 because |xy| ≤ N. 
 
Then the string that is identical to w except that it has k additional ('s at the beginning would also be in the language.  But it can't 
be because the parentheses would be mismatched.  So the language is not regular. 
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All Regular Languages Are Context Free 
 
(1) Every regular language can be described by a regular grammar.  We know this because we can derive a regular grammar from 
any FSM (as well as vice versa).  Regular grammars are special cases of context-free grammars. 
 
                              a, b 
                
                 S                                  T 
 
                              a, b 
 
(2) The context-free languages are precisely the languages accepted by NDPDAs.  But every FSM is a PDA that doesn't bother 
with the stack.  So every regular language can be accepted by a NDPDA and is thus context-free. 
 
(3) Context-free languages are closed under union, concatenation, and Kleene *, and ε and each single character in Σ are clearly 
context free. 
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Parse Trees 
 
Read K & S 3.2 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Derivations and Parse Trees. 
Do Homework 12. 

Parse Trees 
 
Regular languages: 
 

We care about recognizing patterns and taking appropriate actions. 
 
Example: A parity checker 

Structure 
Context free languages: 
 
 We care about structure. 
      E 
 
 
    E   +  E 
 
 
    id       E * E 
 
 
          id  id 
 
    id  +    (id * id) 
 

Parse Trees Capture Essential Structure 
 E → id 
 E → E + E 
 E → E * E 
 
  E         E 
 
 
E  +  E     E  *  E 
 
 
id   E  * E   E +  E   id 
 
 
   id  id   id  id 
 
id  +           (id * id)   (id + id) *  id 
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Parse Trees are Just Trees 
 
                                        root 
 
 
                                            height 
nodes 
 
           leaves 
 
 
 
 
                                       yield 
  
Leaves are all labeled with terminals or ε. 
Other nodes are labeled with nonterminals. 
A path is a sequence of nodes, starting at the root, ending at a leaf, and following branches in the tree. 
The length of the yield of any tree T with height H and branching factor (fanout) B is ≤                                                                                     
 

Derivations 
To capture structure, we must capture the path we took through the grammar.  Derivations do that. 
  S → ε 
  S → SS 
  S → (S) 
    1        2           3             4           5             6 
S � SS � (S)S � ((S))S � (())S � (())(S) � (())() 
S � SS � (S)S � ((S))S � ((S))(S) � (())(S) � (())() 
    1        2           3             5               4              6 
       S 
 
    S       S 
 
  (  S  )  (  S  ) 
 
   ( S )     ε 
 
    ε 

Alternative Derivations 
  S → ε 
  S → SS 
  S → (S) 
   
S � SS � (S)S � ((S))S � (())S � (())(S) � (())() 
S � SS � SSS � S(S)S � S((S))S � S(())S � S(())(S) � S(())()� (())() 
 
   S        S    
 
    S     S    S    S 
 
(    S       )   ( S )           S           S     ( S          ) 
 
      (    S        )   ε                     ε     (      S      )                          ε 
 
      ε                                                 (   S   ) 
 
                     ε 
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Ordering Derivations 
Consider two derivations: 
 
1       2          3            4           5             6           7 
S � SS � (S)S � ((S))S � (())S � (())(S) � (())() 
 
S � SS � (S)S � ((S))S � ((S))(S) � (())(S) � (())() 
1       2         3             4             5               6            7 
 
We can write these, or any, derivation as 
D1 = x1 � x2 � x3 � … � xn 
D2 = x1' � x2' � x3' � … � xn' 

We say that D1 precedes D2, written D1< D2, if: 
• D1 and D2 are the same length > 1, and 
• There is some integer k, 1 < k < n,  such that: 

• for all i ≠ k, xi = xi' 
• xk-1 = x'k-1 = uAvBw : u, v, w ∈  V*,  

and A, B ∈  V - Σ 
• xk = uyvBw, where A → y ∈  R 
• xk' = uAvzw where B → z ∈  R 
• xk+1 = x'k+1 = uyvzw 

Comparing Several Derivations 
Consider three derivations: 
      1       2           3            4              5                6            7 
(1) S � SS � (S)S � ((S))S �    (())S      �(())(S) �(())() 
 
(2) S � SS � (S)S � ((S))S � ((S))(S) �  (())(S) �(())() 
 
(3) S � SS � (S)S � ((S))S � ((S))(S) �  ((S))() �(())() 
 
D1 < D2 
D2 < D3 
But D1 does not precede D3. 
All three seem similar though.  We can define similarity: 

D1 is similar to D2 iff the pair (D1, D2) is in the reflexive, symmetric, transitive closure of <. 
Note:  similar is an equivalence class. 

In other words, two derivations are similar if one can be transformed into another by a sequence of switchings in the order of rule 
applications. 

Parse Trees Capture Similarity 
      1       2           3            4              5             6          7 
(1) S � SS � (S)S � ((S))S �    (())S   �(())(S) �(())() 
 
(2) S � SS � (S)S � ((S))S � ((S))(S) �(())(S) �(())() 
 
(3) S � SS � (S)S � ((S))S � ((S))(S) �((S))() �(())() 
 
D1 < D2 
D2 < D3 
 
All three derivations are similar to each other.  This parse tree describes this equivalence class of the similarity relation: 
       S 
 
    S       S 
 
  (  S  )  (  S  ) 
 
   ( S )     ε 
 
    ε 
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The Maximal Element of < 
 
       S 
 
    S       S 
 
  (  S  )  (  S  ) 
 
   ( S )     ε 

 
ε      

 
There's one derivation in this equivalence class that precedes all others in the class. 
 
We call this the leftmost derivation.  There is a corresponding rightmost derivation. 
 
The leftmost (rightmost) derivation can be used to construct the parse tree and the parse tree can be used to construct the leftmost 
(rightmost) derivation. 

 
Another Example 

E → id 
 E → E + E 
 E → E * E 
 
(1) E � E+E � E+E*E � E+E*id � E+id*id  � id+id*id 
(2) E � E*E � E*id � E+E*id � E+id*id � id+id*id 
 
 
  E         E 
 
 
E  +  E     E  *  E 
 
 
id   E  * E   E +  E   id 
 
 
   id  id   id  id 
id  +          [id * id]        [id + id] *  id 
 

Ambiguity 
 
A grammar G for a language L is ambiguous if there exist strings in L for which G can generate more than one parse tree (note 
that we don't care about the number of derivations). 
 
The following grammar for arithmetic expressions is ambiguous: 
 

E → id 
 E → E + E 
 E → E * E 
 
Often, when this happens, we can find a different, unambiguous grammar to describe L. 
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Resolving Ambiguity in the Grammar 
G = (V, Σ, R, E), where 
 V = {+, *, (, ), id, T, F, E}, 
 Σ = {+, *, (, ), id}, 
 R = {  E → E + T 

E→ T 
 T → T * F 

  T → F 
F → (E) 

  F → id } 

Parse :            id + id * id

 
Another Example 

The following grammar for the language of matched parentheses is ambiguous: 
 
  S → ε 
  S → SS 
  S → (S) 
 
   S        S    
 
    S     S    S    S 
 
(    S       )   ( S )           S           S     ( S          ) 
 
      (    S        )   ε                     ε     (      S      )                          ε 
 
      ε                                                 (   S   ) 
 
                     ε 
 

Resolving the Ambiguity with a Different Grammar 
 
One problem is the ε production. 
 
A different grammar for the language of balanced parentheses: 
 
  S → ε 
  S → S1 

  S1 → S1 S1 
  S1 → (S1) 

S1 → () 

   S 
 
   S1 
 
 S1    S1 
 
( S1   )        (          ) 
             (  ) 
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A General Technique for Eliminating εεεε 
If G is any context-free grammar for a language L and ε ∉  L then we can construct an alternative grammar G' for L by: 
 
1. Find the set N of nullable variables: 

A variable V is nullable if either: 
there is a rule 

(1) V → ε 
or there is a rule 

(2) V → PQR…such that P, Q, R, … are all nullable 
So begin with N containing all the variables that satisfy (1).  Evaluate all other variables with respect to (2).  Continue until 
no new variables can be added to N. 

2. For every rule of the form 
P → αQβ for some Q in N, add a rule 
P → αβ  

3. Delete all rules of the form 
     V → ε 

Sometimes Eliminating Ambiguity Isn't Possible 
 
  S  → NP  VP 
  NP  → the NP1 | NP1 | NP2 
  NP1  → ADJ  NP1 | N 

NP2 → NP1 PP 
  ADJ → big | youngest | oldest 
  N → boy | boys | ball | bat | autograph 
  VP →V | V  NP 
  VP → VP PP 
  V → hit| hits 
  PP → with NP 

The boys hit the ball with the bat. 
 
 
 
 
The boys hit the ball with the autograph. 

Why It's Not Possible 
• We could write an unambiguous grammar to describe L but it wouldn't always get the parses we want.  Any grammar that is 

capable of getting all the parses will be ambiguous because the facts required to choose a derivation cannot be captured in 
the context-free framework. 

Example:  Our simple English grammar 
  [[The boys] [hit [the ball] [with [the bat]]]] 
  [[The boys] [hit [the ball] [with [the autograph]]]] 
• There is no grammar that describes L that is not ambiguous. 

Example:  L = {anbncm} ∪  {anbmcm} 
 

S → S1 | S2 
S1 → S1c | A  Now consider the strings anbncn 
A → aAb | ε 
S2 → aS2|B  They have two distinct derivations 
B → bBc | ε 

Inherent Ambiguity of CFLs 
A context free language with the property that all grammars that generate it are ambiguous is inherently ambiguous.   
 

L = {anbncm} ∪  {anbmcm} is inherently ambiguous. 
 
Other languages that appear ambiguous given one grammar, turn out not to be inherently ambiguous because we can find an 
unambiguous grammar. 
 
 Examples:    Arithmetic Expressions 
    Balanced Parentheses 
 
Whenever we design practical languages, it is important that they not be inherently ambiguous. 
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Pushdown Automata 
Read K & S 3.3. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Designing Pushdown Automata. 
Do Homework 13. 
 

Recognizing Context-Free Languages 
 
Two notions of recognition: 

(1) Say yes or no, just like with FSMs 
(2) Say yes or no, AND 

   if yes, describe the structure 
 
 
 
 
 
 
 
 
 
                               a        +            b       *      c 

Just Recognizing 
 
We need a device similar to an FSM except that it needs more power. 
 
The insight:  Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure. 
 
(    (    (    (    (    )    )    )    )        (    )    (    (    )    )   
 
 
 

 (   Finite    
   (     State     
   (         Controller   
   (       
   (      ( 
 

Definition of a Pushdown Automaton 
 
M = (K, Σ, Γ, ∆, s, F), where: 
 K is a finite set of states 
 Σ  is the input alphabet 
 Γ is the stack alphabet 
 s ∈  K is the initial state 
 F ⊆  K is the set of final states, and 
 ∆ is the transition relation.  It is a finite subset of  
 

(K     ×    (Σ ∪  {ε})  ×          Γ*                    )        ×           (      K      ×         Γ*                          )   
 

 state       input or ε    string of symbols to pop                         state             string of symbols to 
         from  top of stack                                   push on top of stack 
        
M accepts a string w iff 
  (s, w, ε) |-M* (p, ε, ε)        for some state p ∈  F 
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A PDA for Balanced Brackets 
 

                                                                [//[ 
                                             s 
                       ]/[/ 

 
M = (K, Σ, Γ, ∆, s, F), where: 
 K = {s}    the states 
 Σ = {[, ]}    the input alphabet 
 Γ = {[}    the stack alphabet 
 F = {s} 
 ∆ contains: 
 
  ((s, [, ε), (s, [ ))     
  ((s, ], [ ), (s, ε))    
 
Important: 

This does not mean that the stack is empty. 
An Example of Accepting 

 
                                                                [//[ 
                                             s 
                        ]/[/ 
 
∆ contains: 
[1]  ((s, [, ε), (s, [ )) 
[2]  ((s, ], [ ), (s, ε)) 
input =    [  [  [  ]  [  ]  ]  ]   
 

trans  state   unread input   stack 
      s     [ [ [ ] [ ] ] ]   ε 
    1        s       [ [ ] [ ] ] ]   [  
    1        s         [ ] [ ] ] ]   [[ 
    1        s           ] [ ] ] ]   [[[ 
    2        s             [ ] ] ]   [[ 
    1        s               ] ] ]   [[[ 
    2        s                 ] ]   [[ 
    2        s                   ]   [ 
    2        s                  ε   ε 

 
An Example of Rejecting 

 
                                                               [//[ 
                                             s 
                       ]/[/ 
∆ contains: 
[1]  ((s, [, ε), (s, [ )) 
[2]  ((s, ], [ ), (s, ε)) 
input =    [  [  ]  ]  ] 
 

trans  state   unread input   stack  
    s     [ [ ] ] ]    ε 

1      s       [ ] ] ]    [ 
1      s         ] ] ]    [[ 
2      s           ] ]    [ 
2      s             ]    ε 

     none!      s             ]    ε 
We're in s, a final state, but we cannot accept because the input string is not empty.  So we reject. 
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A PDA for anbn 
 
First we notice: 
• We'll use the stack to count the a's. 
• This time, all strings in L have two regions.  So we need two states so that a's can't follow b's.  Note the similarity to the 

regular language a*b*. 
 
 
 
 
 

A PDA for wcwR 
 
A PDA to accept strings of the form wcwR: 
 
                                     a//a                                         a/a/ 
                                                                  c// 
                                                 s                                             f 
 
                                     b//b                                        b/b/ 
 
M = (K, Σ, Γ, ∆, s, F), where: 
 K = {s, f}    the states 
 Σ = {a, b, c}     the input alphabet 
 Γ = {a, b}    the stack alphabet 
 F = {f}     the final states 
 ∆ contains: 
  ((s, a, ε), (s, a)) 
  ((s, b, ε), (s, b)) 
  ((s, c, ε), (f, ε)) 
  ((f, a, a), (f, ε)) 
  ((f, b, b), (f, ε)) 

An Example of Accepting 
 

 
                                      a//a                                       a/a/ 
                                                                    c// 
                                                 s                                             f 
 
                                     b//b                                       b/b/ 
 
∆ contains: 
[1] ((s, a, ε), (s, a)) 
[2] ((s, b, ε), (s, b)) 
[3] ((s, c, ε), (f, ε)) 
[4] ((f, a, a), (f, ε)) 
[5] ((f, b, b), (f, ε)) 
 
input =  b a c a b 
           trans  state  unread input           stack  

    s  b a c a b   ε 
2      s     a c a b   b 
1      s        c a b   ab 
3      f           a b   ab 
5      f              b   b 
6      f                   ε   ε 
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A Nondeterministic PDA 
L = wwR 

S → ε 
S → aSa 
S → bSb 

A PDA to accept strings of the form wwR: 
 
                                    a//a                                       a/a/ 
                                                                 ε// 
                                                 s                                             f 
 
                                   b//b                                       b/b/ 
 
 
M = (K, Σ, Γ, ∆, s, F), where: 
 K = {s, f}   the states 
 Σ = {a, b, c}    the input alphabet 
 Γ = {a, b}   the stack alphabet 
 F = {f}    the final states 
 ∆ contains: 
  ((s, a, ε), (s, a)) 
  ((s, b, ε), (s, b)) 
  ((s, ε, ε), (f, ε)) 
  ((f, a, a), (f, ε)) 
  ((f, b, b), (f, ε)) 

An Example of Accepting 
 
 
                                      a//a                                        a/a/ 
                                                                      ε// 
                                                  s                                            f 
 
                                     b//b                                        b/b/ 
 
 
[1]  ((s, a, ε), (s, a)) 
[2]  ((s, b, ε), (s, b)) 
[3]  ((s, ε, ε), (f, ε)) 

[4]  ((f, a, a), (f, ε)) 
[5]  ((f, b, b), (f, ε)) 
 

input: a a b b a a 
 

trans  state  unread input   stack  
    s  a a b b a a    ε 

1      s     a b b a a   a 
3      f     a b b a a   a 
4      f        b b a a   ε 
none 
 
trans  state  unread input   stack  

    s  a a b b a a    ε 
1      s     a b b a a   a 
1      s        b b a a   aa 
2      s           b a a   baa 
3      f           b a a   baa 
5      f              a a   aa 
4      f                 a   a 
4      f    ε   ε 
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L = {ambn : m ≤≤≤≤ n} 
A context-free grammar for L: 

S → ε 
S → Sb   /* more b's 
S → aSb 

A PDA to accept L: 
 
 
               a//a                                b/a/                            
                                  b/a/                                         b/ε/  
                  1                                            2                                            
                                  b/ε/ 
                   
                 

Accepting Mismatches 
 
L = {ambn m ≠ n; m, n >0} 
 
 
               a//a                                 b/a/                                     
                                  b/a/                                        
                  1                                            2                
                                                                            
                   
                      
• If stack and input are empty, halt and reject. 
 
• If input is empty but stack is not (m > n) (accept): 
 
 
               a//a                                b/a/                                      ε/a/ 
                                  b/a/                                        ε/a/ 
                  1                                            2                                          3 
                                                                             
                   
 
• If stack is empty but input is not (m < n) (accept): 
 
 
 
               a//a                                b/a/                                      ε/a/ 
                                  b/a/                                        ε/a/ 
                 1                                              2                                         3 
                                                                             
                   
                             b// 
         4                    b// 
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Eliminating Nondeterminism 
 
A PDA is deterministic if, for each input and state, there is at most one possible transition.  Determinism implies uniquely 
defined machine behavior. 
 
 
               a//a                                b/a/                                       ε/a/ 
                                  b/a/                                        ε/a/ 
                 1                                              2                                         3 
                                                                             
                   
                             b// 
         4                    b// 
 
• Jumping to the input clearing state 4: 

Need to detect bottom of stack, so push Z onto the stack before we start. 
 
                                         a//a                                          b/a/                                      ε/a/ 
                        ε//Z                                        b/a/                                        ε/a/ 
            0                                       1                                             2                                          3                    ε/Z/ 
 
                   
                                                           b/Z/ 
                                            4                     b// 
 
• Jumping to the stack clearing state 3: 

Need to detect end of input.  To do that, we actually need to modify the definition of L to add a termination character 
(e.g., $) 
 

L = {anbmcp : n,m,p ≥≥≥≥ 0 and (n ≠≠≠≠ m or m ≠≠≠≠ p)} 
 
S → NC  /* n ≠ m, then arbitrary c's 
S → QP  /* arbitrary a's, then p ≠ m 
N → A  /* more a's than b's 
N → B  /* more b's than a's 
A → a   
A → aA 
A → aAb 
B → b  
B → Bb 
B → aBb 

C → ε | cC /* add any number of c's 
P → B'  /* more b's than c's 
P → C'  /* more c's than b's 
B' → b    
B' → bB' 
B' → bB'c 
C' → c | C'c   
C' → C'c 
C' → bC'c 
Q → ε | aQ /* prefix with any number of a's 

 
 

L = {anbmcp : n,m,p ≥≥≥≥ 0 and (n ≠≠≠≠ m or m ≠≠≠≠ p)} 
 

 
                   ε//Z                           a//a 
      S                              S'                                          machine for N 
 
                                          a//                   b,c 
                                                                                                                  

        clear and accept  
                               machine for P 



Lecture Notes 14                          Pushdown Automata 7

Another Deterministic CFL 
 
L = {anbn} ∪  {bn an} 
 
A CFG for L:    A NDPDA for L: 
 
S → A 
S → B 
A → ε 
A → aAb 
B → ε 
B → bBa 
 
A DPDA for L: 
 

 
More on PDAs 

 
What about a PDA to accept strings of the form ww? 

 
Every FSM is (Trivially) a PDA 

 
Given an FSM M = (K, Σ, ∆, s, F)  
 and elements of ∆ of the form 
  ( p,                i,           q        ) 
            old state,              input,     new state 
 
We construct a PDA M' = (K, Σ, Γ, ∆, s, F)  
 where Γ = ∅   /* stack alphabet 
  and 
 each transition (p, i, q)  becomes 
(  (       p,               i,                      ε                     ),                      (       q,                      ε                   )    ) 
     old state,       input,  don't look at stack       new state don't push on stack 
 
In other words, we just don't use the stack. 

 
Alternative (but Equivalent) Definitions of a NDPDA 

 
Example:  Accept by final state at end of string (i.e., we don't care about the stack being empty) 
We can easily convert from one of our machines to one of these: 
1. Add a new state at the beginning that pushes # onto the stack. 
2. Add a new final state and a transition to it that can be taken if the input string is empty and the top of the stack is #. 
Converting the balanced parentheses machine: 

 
                                                                (//(                                          ε//#                              (//( 
                                              S                                                  S                             S' 
                       )/(/                                                                                 )/(/ 

                    ε/#/ 
           
 
          F 
 
The new machine is nondeterministic: 
      (    )     (    ) 
              � 
The stack will be:                                                        #    
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What About PDA's for Interesting Languages? 
 
  E → E + T   Arithmetic Expressions 

E → T 
 T → T * F             ε/ε/E 

  T → F                   1   2 
F → (E) 

  F → id    
 
 
(1)   (2, ε, E), (2, E+T)    Example: 
(2)   (2, ε, E), (2, T)     a + b * c 
(3)   (2, ε, T), (2, T*F) 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)  
(7)   (2, id, id), (2, ε) 
(8)   (2, (, (  ), (2, ε) 
(9)   (2, ), )  ), (2, ε) 
(10) (2, +, +), (2, ε) 
(11) (2, *, *), (2, ε) 
 
But what we really want to do with languages like this is to extract structure. 

 
Comparing Regular and Context-Free Languages 

 
Regular Languages 
 
• regular expressions 

- or - 
• regular grammars 
• recognize 
• = DFSAs 

Context-Free Languages 
 
• context-free grammars 
 
 
• parse 
• = NDPDAs 
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Pushdown Automata and Context-Free Grammars 
 
Read K & S 3.4. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Context-Free Languages and PDAs. 
Do Homework 14. 
 

PDAs and Context-Free Grammars 
 
Theorem:  The class of languages accepted by PDAs is exactly the class of context-free languages. 
 

Recall: context-free languages are languages that can be defined with context-free grammars. 
 
Restate theorem:       Can describe with context-free grammar ⇔ Can accept by PDA 
 

Going One Way 
 
Lemma: Each context-free language is accepted by some PDA. 
Proof (by construction by “top-down parse” conversion algorithm): 
 
The idea:  Let the stack do the work. 
 
Example: Arithmetic expressions 
 
  E → E + T    

E → T 
 T → T * F      ε/ε/E 

  T → F      1    2 
F → (E) 

  F → id    
 
(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F) 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)  

(7)   (2, id, id), (2, ε) 
(8)   (2, (, (  ), (2, ε) 
(9)   (2, ), )  ), (2, ε) 
(10) (2, +, +), (2, ε) 
(11) (2, *, *), (2, ε) 

The Top-down Parse Conversion Algorithm 
 
Given G = (V, Σ, R, S) 
Construct M such that L(M) = L(G) 
 
M = ({p, q}, Σ, V, ∆, p, {q}), where ∆ contains: 
 
(1) ((p, ε, ε), (q, S)) 
  push the start symbol on the stack 
 
(2) ((q, ε, A), (q, x)) for each rule A → x in R 
  replace left hand side with right hand side 
 
(3) ((q, a, a), (q, ε)) for each a ∈  Σ 
  read an input character and pop it from the stack 

 
The resulting machine can execute a leftmost derivation of an input string in a top-down fashion. 
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Example of the Algorithm 
L = {anb*an}
 
(1) S → ε   
(2) S → B 
(3) S → aSa 
(4) B → ε 
(5) B → bB 
 
input = a a b b a a 

0 (p, ε, ε), (q, S) 
1 (q, ε, S), (q, ε) 
2 (q, ε, S), (q, B) 
3 (q, ε, S), (q, aSa) 
4 (q, ε, B), (q, ε) 
5 (q, ε, B), (q, bB) 
6 (q, a, a), (q, ε) 
7 (q, b, b), (q, ε) 

trans  state                unread input              stack  
    p    a a b b a a    ε 

0      q    a a b b a a   S 
3      q    a a b b a a   aSa 
6      q       a b b a a   Sa 
3      q       a b b a a   aSaa 
6      q          b b a a   Saa 
2      q          b b a a   Baa 
5      q          b b a a   bBaa 
7      q             b a a   Baa 
5      q             b a a   bBaa 
7      q                a a   Baa 
4      q                a a   aa 
6      q                   a   a 
6      q                   ε   ε 

 
Another Example 

L = {anbmcpdq : m + n = p + q} 
 
(1) S → aSd 
(2) S → T 
(3) S → U 
(4) T → aTc 
(5) T → V 
(6) U → bUd 
(7) U → V 
(8) V → bVc 
(9) V → ε 
 
 
input = a a b c d d 

0 (p, ε, ε), (q, S) 
1 (q, ε, S), (q, aSd) 
2 (q, ε, S), (q,T) 
3 (q, ε, S), (q,U) 
4 (q, ε, T), (q, aTc) 
5 (q, ε, T), (q, V) 
6 (q, ε, U), (q, bUd) 
7 (q, ε, U), (q, V) 
8 (q, ε, V), (q, bVc 
9 (q, ε, V), (q, ε) 
10 (q, a, a), (q, ε) 
11 (q, b, b), (q, ε) 
12 (q, c, c), (q, ε) 
13 (q, d, d), (q, ε) 

 
The Other Way—Build a PDA Directly 

L = {anbmcpdq : m + n = p + q} 
 
(1) S → aSd 
(2) S → T 
(3) S → U 
(4) T → aTc 
(5) T → V 
 

(6) U → bUd 
(7) U → V 
(8) V → bVc 
(9) V → ε 
 
 

                   a//a                        b//a                          c/a/                         d/a/ 
                                        b//a                        c/a/                           d/a/ 
  1    2       3         4 
                                         ε/ε/                       ε/ε/                           ε/ε/ 
input = a a b c d d 
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Notice Nondeterminism 
 
Machines constructed with the algorithm are often nondeterministic, even when they needn't be.  This happens even with trivial 
languages. 

Example:  L = anbn 

 
A grammar for L is: 
 
[1] S → aSb 
[2] S → ε 

A machine M for L is: 
(0)  ((p, ε, ε), (q, S)) 
(1)  ((q, ε, S), (q, aSb)) 
(2)  ((q, ε, S), (q, ε)) 
(3)  ((q, a, a), (q, ε)) 
(4)  ((q, b, b), (q, ε)) 

But transitions 1 and 2 make M nondeterministic. 
 
A nondeterministic transition group is a set of two or more transitions out of the same state that can fire on the same 
configuration.  A PDA is nondeterministic if it has any nondeterministic transition groups. 
 
A directly constructed machine for L:  
 
 

Going The Other Way 
 
Lemma: If a language is accepted by a pushdown automaton, it is a context-free language (i.e., it can be described by a context-
free grammar). 
Proof (by construction) 
 
Example:  L = {wcwR : w ∈  {a, b}*} 
 
        a//a                                      a/a/ 
                                  c// 
                  s                                          f 
 
       b//b                                     b/b/ 
 
M = ({s, f}, {a, b, c}, {a, b}, ∆, s,{f}), where: 

 ∆ contains: 
  ((s, a, ε), (s, a)) 
  ((s, b, ε), (s, b)) 
  ((s, c, ε), (f, ε)) 
  ((f, a, a), (f, ε)) 
  ((f, b, b), (f, ε)) 

 
First Step: Make M Simple 

A PDA M is simple iff: 
1. there are no transitions into the start state, and 
2. whenever ((q, x, β), (p, γ) is a transition of M and q is not the start state, then β ∈  Γ, and |γ| ≤ 2. 
 
Step 1:  Add s' and f': 
 
                                             a/ε/a                 a/a/ 
                         ε/ε/Z                      c//                                 ε/Z/ 
                   s'                  s                                       f                            f' 
 
                          b/ε/b                                  b/b/ 
 
Step 2: 
(1) Assure that |β| ≤ 1. 
 
 
(2) Assure that |γ| ≤ 2. 
 
 
(3) Assure that |β| = 1. 
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Making M Simple 
 
 
                                             a/ε/a                 a/a/ 
                         ε/ε/Z                   c//                                 ε/Z/ 
                  s'                   s                                       f                            f' 
 
                            b/ε/b                                b/b/ 
 
 
M = ({s, f, s', f'}, {a, b, c}, {a, b, Z}, ∆, s',{f'}), ∆=  
     ((s', ε, ε), (s, Z))  

((s, a, ε), (s, a))   ((s, a, Z), (s, aZ))   
     ((s, a, a), (s, aa)) 

((s, a, b), (s, ab)) 
((s, b, ε), (s, b))   ((s, b, Z), (s, bZ))  

     ((s, b, a), (s, ba))  
((s, b, b), (s, bb))  

((s, c, ε), (f, ε))   ((s, c, Z), (f, Z))  
     ((s, c, a), (f, a))   

((s, c, b), (f, b))   
((f, a, a), (f, ε))   ((f, a, a), (f, ε)) 

 ((f, b, b), (f, ε))   ((f, b, b), (f, ε)) 
     ((f, ε, Z), (f', ε))  

 
Second Step - Creating the Productions 

 
The basic idea -- simulate a leftmost derivation of M on any input string. 
Example:                 abcba 
                                                     S [1] 
 
                                               <s, Z, f'> [2] 
 
a                         <s, a, f> [4]                                                          <f, Z, f'> [8] 
 
       b                  <s, b, f> [5]                   <f, a, f> [6]                 ε                <f', ε, f'> [10] 
 
                     c           <f, b, f> [7]           a       <f, ε, f> [9]                                 ε 
 
                               b     <f, ε, f> [9]                     ε 
 
                                            ε  
 
If the nonterminal <s1, X, s2> �* w, then the PDA starts in state s1

 with (at least) X on the stack and after consuming w and 
popping the X off the stack, it ends up in state s2. 
 
Start with the rule: 
 S → <s, Z, f’>  where s is the start state, f’ is the (introduced) final state and Z is the stack bottom symbol. 
 
Transitions ((s1, a, X), (s2, YX)) become a set of rules: 
 <s1, X, q> → a <s2, Y, r> <r, X, q>   for a ∈  Σ ∪  {ε}, ∀ q,r ∈  K 
 
Transitions ((s1, a, X), (s2, Y)) becomes a set of rules: 
 <s1, X, q> → a <s2, Y, q>    for a ∈  Σ ∪  {ε}, ∀ q ∈  K 
 
Transitions ((s1, a, X), (s2, ε)) become a rule: 
 <s1, X, s2> → a      for a ∈  Σ ∪  {ε} 
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Creating Productions from Transitions 
 
   S → <s, Z, f'>    [1] 
((s', ε, ε), (s, Z))   
((s, a, Z), (s, aZ))  <s, Z, f'> → a <s, a, f> <f, Z, f'>  [2] 
   <s, Z, s> → a <s, a, f> <f, Z, s>   [x] 
   <s, Z, f> → a <s, a, s> <s, Z, f>  [x] 
   <s, Z, s> → a <s, a, s> <s, Z, f>  [x] 
   <s, Z, s'> → a <s, a, f> <f, Z, s'>  [x] 
((s, a, a), (s, aa))  <s, a, f> → a <s, a, f> <f, a, f>   [3] 
((s, a, b), (s, ab))  … 
((s, b, Z), (s, bZ))  … 
((s, b, a), (s, ba))   <s, a, f> → b <s, b, f> <f, a, f>   [4] 
((s, b, b), (s, bb))   … 
((s, c, Z), (f, Z))  … 
((s, c, a), (f, a))   <s, a, f> → c <f, a, f> 
((s, c, b), (f, b))   <s, b, f> → c <f, b, f>   [5] 
((f, a, a), (f, ε))  <f, a, f> → a <f, ε, f>   [6] 
((f, b, b), (f, ε))  <f, b, f> → b <f, ε, f>   [7] 
((f, ε, Z), (f', ε))  <f, Z, f'> → ε <f', ε, f'>   [8] 
   <f, ε, f> → ε    [9] 
   <f' ε, f'> → ε    [10] 

 
 

Comparing Regular and Context-Free Languages 
 
Regular Languages 
 
• regular exprs. 

• or 
• regular grammars 
• recognize 
• = DFSAs 

Context-Free Languages 
 
• context-free grammars 
 
 
• parse 
• = NDPDAs 
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Grammars and Normal Forms  
 
Read K & S 3.7. 

Recognizing Context-Free Languages 
 
Two notions of recognition: 
 

(1) Say yes or no, just like with FSMs 
 
 

(2) Say yes or no, AND 
 

   if yes, describe the structure 
 
 
 
 
 
 
 
 
 
 
                               a        +           b         *           c 
 
Now it's time to worry about extracting structure (and doing so efficiently). 
 

Optimizing Context-Free Languages 
 
For regular languages: 
Computation = operation of FSMs.  So, 

Optimization   =  Operations on FSMs: 
    Conversion to deterministic FSMs 
    Minimization of FSMs 
For context-free languages: 
Computation = operation of parsers.  So, 
  Optimization   = Operations on languages 

 Operations on grammars 
 Parser design 

 
Before We Start: Operations on Grammars 

 
There are lots of ways to transform grammars so that they are more useful for a particular purpose. 
the basic idea: 
1. Apply transformation 1 to G to get of undesirable property 1.  Show that the language generated by G is unchanged. 
2. Apply transformation 2 to G to get rid of undesirable property 2.  Show that the language generated by G is unchanged AND 

that undesirable property 1 has not been reintroduced. 
3. Continue until the grammar is in the desired form. 
 
Examples: 
• Getting rid of ε rules (nullable rules) 
• Getting rid of sets of rules with a common initial terminal, e.g., 

• A → aB, A → aC become A → aD, D → B | C 
• Conversion to normal forms 
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Normal Forms 
 
If you want to design algorithms, it is often useful to have a limited number of input forms that you have to deal with. 
 
Normal forms are designed to do just that.  Various ones have been developed for various purposes.   
 
Examples: 
 
• Clause form for logical expressions to be used in resolution theorem proving 
• Disjunctive normal form for database queries so that they can be entered in a query by example grid. 
• Various normal forms for grammars to support specific parsing techniques. 
 

Clause Form for Logical Expressions 
 
∀ x : [Roman(x) ∧  know(x, Marcus)] →  [hate(x, Caesar) ∨   (∀ y : ∃ z : hate(y, z) → thinkcrazy(x, y))] 
 

becomes 
 
¬Roman(x) ∨  ¬know(x, Marcus) ∨  hate(x, Caesar) ∨  ¬hate(y, z) ∨  thinkcrazy(x, z) 
 

Disjunctive Normal Form for Queries 
 
(category = fruit or category = vegetable) 
  and 
(supplier = A or supplier = B) 
 

becomes 
 
(category = fruit and supplier = A)      or 
(category = fruit and supplier = B)   or 
(category = vegetable and supplier = A)  or 
(category = vegetable and supplier = B) 
 
 

Category Supplier Price 
fruit A  
fruit B  
vegetable A  
vegetable B  

 
Normal Forms for Grammars 

 
Two of the most common are:  
 
• Chomsky Normal Form, in which all rules are of one of the following two forms:  

• X → a, where a ∈  Σ,  or 
• X → BC, where B and C are nonterminals in G 
 

• Greibach Normal Form, in which all rules are of the following form: 
• X → a β, where a ∈  Σ and β is a (possibly empty) string of nonterminals 

 
If L is a context-free language that does not contain ε, then if G is a grammar for L, G can be rewritten into both of these normal 
forms. 
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What Are Normal Forms Good For? 
Examples: 
• Chomsky Normal Form: 

• X → a, where a ∈  Σ,  or 
• X → BC, where B and C are nonterminals in G 

♦  The branching factor is precisely 2.  Tree building algorithms can take advantage of that. 
 
• Greibach Normal Form 

• X → a β, where a ∈  Σ and β is a (possibly empty) string of nonterminals 
♦ Precisely one nonterminal is generated for each rule application.  This means that we can put a bound on the number of rule 
applications in any successful derivation. 

Conversion to Chomsky Normal Form 
 
Let G be a grammar for the context-free language L where ε ∉  L. 
We construct G', an equivalent grammar in Chomsky Normal Form by: 
0. Initially, let G' = G. 
1. Remove from G' all ε productions: 

1.1. If there is a rule A → αBβ and B is nullable, add the rule A → αβ and delete the rule B → ε. 
Example: 

S → aA  
A → B | CD 
B → ε 
B → a 
C → BD 
D → b  
D → ε 

Conversion to Chomsky Normal Form 
 
2. Remove from G' all unit productions (rules of the form A → B, where B is a nonterminal): 

2.1. Remove from G' all unit productions of the form A → A. 
2.2. For all nonterminals A, find all nonterminals B such that A �* B, A ≠ B. 
2.3. Create G'' and add to it all rules in G' that are not unit productions. 
2.4. For all A and B satisfying 3.2, add to G''  

A → y1 | y2 | … where B → y1 | y2 | is in G". 
2.5. Set G' to G''. 
Example: A → a 

 A → B 
 A → EF 
 B → A 
 B → CD 
 B → C 
 C → ab 

At this point, all rules whose right hand sides have length 1 are in Chomsky Normal Form. 
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Conversion to Chomsky Normal Form 
 
3. Remove from G' all productions P whose right hand sides have length greater than 1 and include a terminal (e.g., A → 

aB or A → BaC): 
3.1. Create a new nonterminal Ta for each terminal a in Σ. 
3.2. Modify each production P by substituting Ta for each terminal a. 
3.3. Add to G', for each Ta, the rule Ta → a 
 
Example: 

A → aB 
A → BaC 
A → BbC 
 
Ta → a   
Tb → b 

Conversion to Chomsky Normal Form 
 
4. Remove from G' all productions P whose right hand sides have length greater than 2 (e.g., A → BCDE) 

4.1. For each P of the form A → N1N2N3N4…Nn, n > 2, create new nonterminals M2, M3, … Mn-1. 
4.2. Replace P with the rule A → N1M2. 
4.3. Add the rules M2 → N2M3, M3 → N3M4, … Mn-1 → Nn-1Nn 

 
Example: 

A → BCDE      (n = 4) 
 

A → BM2 
M2 → C M3 
M3 → DE 
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Top Down Parsing 
 
Read K & S 3.8. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Parsing, Sections 1 and 2. 
Do Homework 15. 

Parsing 
 
Two basic approaches: 
 
Top Down 
 
E      �   E   �  E 
             
             E +             T            . +      T 
       . 
       . 
       id 
 
Bottom Up 
              E 
 
       E 
 
       T  T 
 
   F    F  F 
 
id + id   �  id   +   id �   id    +           id 

 
A Simple Parsing Example 

 
A simple top-down parser for arithmetic expressions, given the grammar 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
[7]  F → id(E) 
 
A PDA that does a top down parse: 
 
(0)   (1, ε, ε), (2, E) 
(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F) 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)  

(7)   (2, ε, F), (2, id(E)) 
(8)   (2, id, id), (2, ε) 
(9)   (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 
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How Does It Work? 
 
Example:             id + id * id(id) 
 
Stack:   
 
 
 
 
 
 
   E 
 

What Does It Produce? 
 
The leftmost derivation of the string.  Why? 
 
E � E + T � T + T � F + T � id + T � 
   id + T * F � id + F * F � id + id * F � 
   id + id * id(E) � id + id * id(T) �  

  id + id * id(F) � id + id * id(id) 
 
     E 

 
          E           +    T 
 
          T             T     *      F 
 
          F            F    id  (   E   ) 
  
          id            id              T 
 
                    F 
 
                    id 

 
But the Process Isn't Deterministic 

 
(0)   (1, ε, ε), (2, E) 
(1)   (2, ε, E), (2, E+T)      nondeterministic 
(2)   (2, ε, E), (2, T)  
(3)   (2, ε, T), (2, T*F)   nondeterministic 
(4)   (2, ε, T), (2, F) 
(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)    nondeterministic 
(7)   (2, ε, F), (2, id(E)) 
(8)   (2, id, id), (2, ε) 
(9)   (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 
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Is Nondeterminism A Problem? 
Yes. 
 
In the case of regular languages, we could cope with nondeterminism in either of two ways: 
• Create an equivalent deterministic recognizer (FSM) 
• Simulate the nondeterministic FSM in a number of steps that was still linear in the length of the input string. 
 
For context-free languages, however, 
• The best straightforward general algorithm for recognizing a string is O(n3) and the best (very complicated) algorithm is 

based on a reduction to matrix multiplication, which may get close to O(n2). 
 
We'd really like to find a deterministic parsing algorithm that could run in time proportional to the length of the input string. 

 
Is It Possible to Eliminate Nondeterminism? 

 
In this case: Yes 
 
In general: No 
 
Some definitions: 
 
• A PDA M is deterministic if it has no two transitions such that for some (state, input, stack sequence) the two transitions 

could both be taken. 
 
• A language L is deterministic context-free if L$ = L(M) for some deterministic PDA M. 
 
Theorem:  The class of deterministic context-free languages is a proper subset of the class of context-free languages. 
 
Proof:  Later. 

Adding a Terminator to the Language 
 
We define the class of deterministic context-free languages with respect to a terminator ($) because we want that class to be as 
large as possible.   
 
Theorem:  Every deterministic CFL (as just defined) is a context-free language. 
 
Proof: 
 
 
 
Without the terminator ($), many seemingly deterministic cfls aren't.  Example: 
  a* ∪  {anbn : n> 0} 

 
Possible Solutions to the Nondeterminism Problem 

 
1) Modify the language 

• Add a terminator $ 
2) Change the parsing algorithm 
3) Modify the grammar 
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Modifying the Parsing Algorithm 
 
What if we add the ability to look one character ahead in the input string?   
 
Example:      id + id * id(id) 
         ���� 
E � E + T � T + T � F + T � id + T � 
   id + T * F � id + F * F � id + id * F  
 
Considering transitions: 

(5)   (2, ε, F), (2, (E) ) 
(6)   (2, ε, F), (2, id)     
(7)   (2, ε, F), (2, id(E)) 

 
If we add to the state an indication of what character is next, we have: 

(5)   (2, (, ε, F), (2, (E) ) 
(6)   (2, id, ε, F), (2, id)     
(7)   (2, id, ε, F), (2, id(E)) 

Modifying the Language 
 
So we've solved part of the problem.  But what do we do when we come to the end of the input?  What will be the state indicator 
then? 
 
The solution is to modify the language.  Instead of building a machine to accept L, we will build a machine to accept L$. 
 

Using Lookahead 
 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
[7]  F → id(E) 
 

(0) (1, ε, ε), (2, E)) 
(1) (2, ε, E), (2, E+T)  
(2) (2, ε, E), (2, T)  
(3) (2, ε, T), (2, T*F) 
(4) (2, ε, T), (2, F) 
(5) (2, (, ε, F), (2, (E) ) 
(6) (2, id, ε, F), (2, id)  
(7) (2, id, ε, F),(2, id(E)) 
(8) (2, id, id), (2, ε) 
(9) (2, (, (  ), (2, ε) 
(10) (2, ), )  ), (2, ε) 
(11) (2, +, +), (2, ε) 
(12) (2, *, *), (2, ε) 

 
For now, we'll ignore the issue of when we read the lookahead character and the fact that we only care about it if the top symbol 
on the stack is F. 

Possible Solutions to the Nondeterminism Problem 
 
1) Modify the language 

• Add a terminator $ 
2) Change the parsing algorithm 

• Add one character look ahead 
3) Modify the grammar 
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Modifying the Grammar 
 
Getting rid of identical first symbols: 
 
[6]  F → id  
[7]  F → id(E) 

(6) (2, id, ε, F),(2, id)  
(7) (2, id, ε, F),(2, id(E)) 

 
Replace with: 
 
[6']  F → id A  
[7']  A → ε 
[8']  A → (E) 

(6') (2, id, ε, F), (2, id A)  
(7') (2, ¬¬¬¬ (, ε, A), (2, ε) 
(8') (2, (, ε, A), (2, (E)) 

 
The general rule for left factoring: 
 
Whenever  A → αβ1 
  A → αβ2 …   
  A → αβn  
are rules with α ≠ ε and n ≥ 2, then replace them by the rules: 

A → αA' 
 A' → β1 
 A' → β2 … 
 A' → βn 

 
Modifying the Grammar 

 
Getting rid of left recursion: 
 
[1]  E → E + T 
[2]  E → T 

(1)   (2, ε, E), (2, E+T) 
(2)   (2, ε, E), (2, T)  

 
The problem: 
       E 
 
     E  +   T 
 
    E + T 
Replace with: 
 
[1]  E → T E' 
[2]  E' → + T E' 
[3]  E' → ε 

(1)   (2, ε, E), (2, T E') 
(2)   (2, ε, E'), (2, + T E') 
(3)   (2, ε, E'), (2, ε) 
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Getting Rid of Left Recursion 
 
The general rule for eliminating left recursion: 
If G contains the following rules: 
 
A → Aα1 
A → Aα2  … 
A → Aα3 
A → Aαn 
 
A → β1   (where β's do not start with Aα) 
A → β2   
…    
A → βm  
 
and n > 0, then 

Replace them with: 
 
A' → α1A' 
A' → α2A'  … 
A' → α3A' 
A' → αnA' 
A' → ε 
A → β1A' 
A → β2A'  
 … 
A → βmA' 
 

 
Possible Solutions to the Nondeterminism Problem 

 
I. Modify the language 

A. Add a terminator $ 
II. Change the parsing algorithm 

A. Add one character look ahead 
III. Modify the grammar 

A. Left factor 
B. Get rid of left recursion 

 
LL(k) Languages 

 
We have just offered heuristic rules for getting rid of some nondeterminism. 
 
We know that not all context-free languages are deterministic, so there are some languages for which these rules won't work. 
 
We define a grammar to be LL(k) if it is possible to decide what production to apply by looking ahead at most k symbols in the 
input string. 
 
Specifically, a grammar G is LL(1) iff, whenever  
A → α | β are two rules in G: 
1. For no terminal a do α and β derive strings beginning with a. 
2. At most one of α | β can derive ε. 
3. If β �* ε, then α does not derive any strings beginning with a terminal in FOLLOW(A), defined to be the set of terminals 

that can immediately follow A in some sentential form.  
 
We define a language to be LL(k) if there exists an LL(k) grammar for it. 
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Implementing an LL(1) Parser 
 
If a language L has an LL(1) grammar, then we can build a deterministic LL(1) parser for it.  Such a parser scans the input Left to 
right and builds a Leftmost derivation. 
 
The heart of an LL(1) parser is the parsing table, which tells it which production to apply at each step. 
For example, here is the parsing table for our revised grammar of arithmetic expressions without function calls: 

V\ΣΣΣΣ id + * ( ) $ 
E E→TE'   E→TE'   
E'  E'→+TE'   E'→ε E'→ε 
T T→FT'   T→FT'   
T'  T'→ε T'→*FT'  T'→ε T'→ε 
F F→id   F→(E)   

 
Given input id + id * id, the first few moves of this parser will be: 
    E    id + id * id$ 
E→TE'    TE'    id + id * id$  
T→FT'    FT'E'    id + id * id$ 
F→id    idT'E'    id + id * id$ 
    T'E'        + id * id$ 
T'→ε    E'        + id * id$ 

 
But What If We Need a Language That Isn't LL(1)? 

 
Example: 
 

ST → if C then ST else ST 
ST → if C then ST 

 
We can apply left factoring to yield: 
  ST → if C then ST S' 
  S' → else ST | ε 
 
Now we've procrastinated the decision.  But the language is still ambiguous.  What if the input is 
 
 if C1 then if C2 then ST1 else ST2 
 
Which bracketing (rule) should we choose? 
 
A common practice is to choose   S' → else ST 
 
We can force this if we create the parsing table by hand. 
 

Possible Solutions to the Nondeterminism Problem 
 
I. Modify the language 

A. Add a terminator $ 
II. Change the parsing algorithm 

A. Add one character look ahead 
B. Use a parsing table 
C. Tailor parsing table entries by hand 

III. Modify the grammar 
A. Left factor 
B. Get rid of left recursion 
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The Price We Pay 
 
Old Grammar 
[1] E → E + T 
[2] E → T 
 
[3] T → T * F 
[4] T → F 
 
[5] F → (E) 
[6] F → id  
[7] F → id(E) 

New Grammar 
E → TE' 
E' → +TE' 
E' → ε 
T → FT' 
T' → *FT' 
T' → ε 
F → (E) 
F → idA 
A → ε 
A → (E) 

input  = id + id + id  
 
    E 
 
   T      E' 
 
         F            T'    +  T    E' 
 
    id     A        ε     F  T'  + T    E' 
 
            ε     id  A ε    F        T'      ε 
 
       ε          id         A        ε 

 
 

Comparing Regular and Context-Free Languages 
 
Regular Languages 
 
• regular exprs. 

or 
• regular grammars 
• = DFSAs 
• recognize 
• minimize FSAs 

Context-Free Languages 
 
• context-free grammars 
 
 
• = NDPDAs 
• parse 
• find deterministic grammars 
• find efficient parsers 
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Bottom Up Parsing 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Parsing, Section 3. 
 

Bottom Up Parsing 
An Example: 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
 
 
 
 
 
id              +              id               *                id       $ 
 

 
Creating a Bottom Up PDA 

There are two basic actions: 
1. Shift an input symbol onto the stack 
2. Reduce a string of stack symbols to a nonterminal 
 
M will be: 
                                      $/S/ 
    p    q 
      
 
So, to construct M from a grammar G, we need the following transitions: 
 
(1) The shift transitions:  

((p, a, ε), (p, a)), for each a ∈  Σ 
 

(2) The reduce transitions: 
  ((p, ε, αR), (p, A)), for each rule A → α in G. 
 
(3) The finish up transition (accept): 
  ((p, $, S), (q, ε)) 
 
(This is the “bottom-up” CFG to PDA conversion algorithm.) 
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M for Expressions 
0  (p, a, ε), (p, a) for each a ∈  Σ 
1  (p, ε, T + E), (p, E) 
2  (p, ε, T), (p, E) 
3  (p, ε, F * T), (p, T) 
4  (p, ε, F), (p, T) 
5  (p, ε, “)”E”(“ ), (p, F) 
6  (p, ε, id), (p, F) 
7  (p, $, E), (q, ε) 
 
trans (action)             state              unread input      stack 
   p  id + id * id$            ε 
    0 (shift)  p      + id * id$            id 
    6 (reduce F → id) p      + id * id$            F 
    4 (reduce T → F) p      + id * id$            T 
    2 (reduce E → T) p      + id * id$            E 
    0 (shift)  p         id * id$          +E 
    0 (shift)  p             * id$       id+E 
    6 (reduce F → id) p             * id$        F+E 
    4 (reduce T → F) p             * id$        T+E (could also reduce) 
    0 (shift)  p                id$      *T+E 
    0 (shift)  p                  $    id*T+E 
    6 (reduce  F → id) p                  $     F*T+E (could also reduce T → F) 
    3 (reduce T → T * F) p                  $         T+E 
    1 (reduce E → E + T) p                  $              E 
    7 (accept)  q                  $               ε 

 
The Parse Tree 

 
      E 
 
 
  E         T 
 
 
  T      T     F 
 
 
  F      F 
 
 
  id    +  id   *  id   $ 
 

 
Producing the Rightmost Derivation 

 
We can reconstruct the derivation that we found by reading the results of the parse bottom to top, producing: 
 
E �  
E+   T � 
E+   T* F� 
E+   T* id� 
E+   F* id� 

E+  id* id� 
T+  id*id� 
F+  id*id� 
id+ id*id 

 
This is exactly the rightmost derivation of the input string. 
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Possible Solutions to the Nondeterminism Problem  
 
1) Modify the language 

• Add a terminator $ 
 
2) Change the parsing algorithm 

• Add one character look ahead 
• Use a parsing table 
• Tailor parsing table entries by hand 
••••    Switch to a bottom-up parser 

 
3) Modify the grammar 

• Left factor 
• Get rid of left recursion 

 
Solving the Shift vs. Reduce Ambiguity With a Precedence Relation 

 
Let's return to the problem of deciding when to shift and when to reduce (as in our example). 
 
We chose, correctly, to shift * onto the stack, instead of reducing     T+E    to   E. 
 
This corresponds to knowing that “+” has low precedence, so if there are any other operations, we need to do them first. 
 
Solution: 
1. Add a one character lookahead capability. 
2. Define the precedence relation 
          P ⊆           (   V                     ×                          {Σ ∪  $}  ) 
                        top     next 
                  stack     input 
                        symbol    symbol 
 
If (a,b) is in P, we reduce (without consuming the input) .  Otherwise we shift (consuming the input). 

 
How Does It Work? 

 
We're reconstructing rightmost derivations backwards.  So suppose a rightmost derivation contains 

βγabx 
  �                        corresponding to a rule A →γa and not some rule X → ab 
βAbx                       
  �* 
S                        

 
We want to undo rule A.  So if the top of the stack is 
 
      a      
      γ               and the next input character is b, we reduce  
                       now, before we put the b on the stack. 
 
To make this happen, we put (a, b) in P.  That means we'll try to reduce if a is on top of the stack and b is the next character.  We 
will actually succeed if the next part of the stack is γ. 
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Example 
 
T*F 
  �                        corresponding to a rule T→T*F 
  T  
  �*   Input:  id * id * id 
  E                        

 
We want to undo rule T.  So if the top of the stack is 
      F 
      *             and the next input character is anything legal, we reduce. 
      T        
 
The precedence relation for expressions: 
 

V\Σ ( ) id + * $ 
(       
)  •   •  •  •  
id  •   •  •  •  
+       
*       
E       
T  •   •   •  
F  •   •  •  •  

 
A Different Example 

E+T  
  �*                      corresponding to a rule E→E+T 
  E                        

 
We want to undo rule E if the input is  E + T $ 
   or  E + T + id 
  but not   E + T * id 
 
The top of the stack is 
      T 
      +         
      E     
 
The precedence relation for expressions: 
 

V\Σ ( ) id + * $ 
(       
)  •   •  •  •  
id  •   •  •  •  
+       
*       
E       
T  •   •   •  
F  •   •  •  •  
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What About If Then Else? 
 

ST → if C then ST else ST 
ST → if C then ST 

 
What if the input is 
 
 if    C1    then    if    C2    then    ST1    else    ST2 
 
                                                                      1                  2 
 
Which bracketing (rule) should we choose? 
 
We don't put (ST, else) in the precedence relation, so we will not reduce at 1.  At 2, we reduce: 
                                   

ST2         2 
else 
ST1         1 
then          
C2 
if 
then 
C1 
if 

 
Resolving Reduce vs. Reduce Ambiguities 

0  (p, a, ε), (p, a) for each a ∈  Σ 
1  (p, ε, T + E), (p, E) 
2  (p, ε, T), (p, E) 
3  (p, ε, F * T), (p, T) 
4  (p, ε, F), (p, T) 
5  (p, ε, “)” E  “(“ ), (p, F) 
6  (p, ε, id), (p, F) 
7  (p, $, E), (q, ε) 
 
trans (action)             state              unread input      stack 
   p  id + id * id$            ε 
    0 (shift)  p      + id * id$            id 
    6 (reduce F → id) p      + id * id$            F 
    4 (reduce T → F) p      + id * id$            T 
    2 (reduce E → T) p      + id * id$            E 
    0 (shift)  p         id * id$          +E 
    0 (shift)  p             * id$       id+E 
    6 (reduce F → id) p             * id$        F+E 
    4 (reduce T → F) p             * id$        T+E (could also reduce) 
    0 (shift)  p                id$      *T+E 
    0 (shift)  p                  $    id*T+E 
    6 (reduce  F → id) p                  $     F*T+E (could also reduce T →→→→ F) 
    3 (reduce T → T * F) p                  $         T+E 
    1 (reduce E → E + T) p                  $              E 
    7 (accept)  q                  $               ε 
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The Longest Prefix Heuristic 
 
A simple to implement heuristic rule, when faced with competing reductions, is: 
 
  Choose the longest possible stack string to reduce. 
Example: 
   T 
   � 
Suppose the stack has     F  *   T    +   E 
             � 
                                        T 
 
We call grammars that become unambiguous with the addition of a precedence relation and the longest string reduction heuristic 
weak precedence grammars. 

 
Possible Solutions to the Nondeterminism Problem in a Bottom Up Parser 

 
1) Modify the language 

• Add a terminator $ 
 
2) Change the parsing algorithm 

• Add one character lookahead 
• Use a precedence table 
• Add the longest first heuristic for reduction 
• Use an LR parser 

 
3) Modify the grammar 

 
LR Parsers 

 
LR parsers scan each input Left to right and build a Rightmost derivation.  They operate bottom up and deterministically using a 
parsing table derived from a grammar for the language to be recognized. 
 
A grammar that can be parsed by an LR parser examining up to k input symbols on each move is an LR(k) grammar.  Practical 
LR parsers set k to 1. 
 
An LALR ( or Look Ahead LR) parser is a specific kind of LR parser that has two desirable properties: 
• The parsing table is not huge. 
• Most useful languages can be parsed. 
 
Another big reason to use an LALR parser: 

There are automatic tools that will construct the required parsing table from a grammar and some optional additional 
information. 

 
We will be using such a tool:      yacc 
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How an LR Parser Works 
 
                                           Input String 
 
 state 
     state                                                 Lexical Analyzer 
 state 
 state 
                                                 Output Token              
               Stack 
 
 
          Parsing Table 
 
 
 
In simple cases, think of the "states" on the stack as corresponding to either terminal or nonterminal characters.   
 
In more complicated cases, the states contain more information: they encode both the top stack symbol and some facts about 
lower objects in the stack.  This information is used to determine which action to take in situations that would otherwise be 
ambiguous. 

The Actions the Parser Can Take 
 
At each step of its operation, an LR parser does the following two things: 
 
1) Based on its current state, it decides whether it needs a lookahead token.  If it does, it gets one. 
2) Based on its current state and the lookahead token if there is one, it chooses one of four possible actions: 

• Shift the lookahead token onto the stack and clear the lookahead token. 
• Reduce the top elements of the stack according to some rule of the grammar. 
• Detect the end of the input and accept the input string. 
• Detect an error in the input. 
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A Simple Example 
0: S → rhyme $end ; 
1: rhyme → sound  place  ; 
2: sound → DING  DONG  ; 
3: place → DELL   
 
state 0  (empty) 
 $accept : _rhyme $end 
 DING  shift   3 
 .  error 
 rhyme  goto 1 
 sound  goto 2 
state 1  (rhyme) 
 $accept : rhyme_$end 
 $end  accept 
 .  error 
state 2  (sound) 
 rhyme : sound_place 
 DELL  shift 5 
 .  error 
 place   goto 4 
state 3  (DING) 
 sound : DING_DONG 
 DONG  shift 6 
 .  error 
state 4  (place) 
 rhyme : sound place_ (1) 
 .   reduce  1 

 
⇐  the rule this came from 
     state 3 
     current position of input 
     if none of the others match 
     push state 2 
 
 
     if we see EOF, accept 
 
 
 
 
  by rule 1 
 
 
state 5  (DELL) 
 place : DELL_  (3) 
 .   reduce  3 
state 6  (DONG) 
     sound : DING DONG_ (2) 
 .   reduce  2 

 
 

When the States Are More than Just Stack Symbols 
 
[1] <stmt> → procname ( <paramlist>) 
[2] <stmt> → <exp> := <exp> 
[3] <paramlist> → <paramlist>, <param> | <param> 
[4 ] <param> → id 
[5] <exp> → arrayname (<subscriptlist>) 
[6] <subscriptlist> → <subscriptlist>, <sub> | <sub> 
[7] <sub> → id 
 
Example: 
           id 
    procname ( id)         ( 
          procname 
 
Should we reduce id by rule 4 or rule 7? 
 
          procid 
          proc( 
          procname 
 
The parsing table can get complicated as we incorporate more stack history into the states. 
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The Language Interpretation Problem: 
 
                                                 Input:   -(17 * 83.56) + 72 / 12  
 
 
 
                                                       Output:   -1414.52 
 

The Language Interpretation Problem: 
 
                                                Input:   -(17 * 83.56) + 72 / 12  
 
 
    Compute the answer 
 
 
                                                       Output:   -1414.52 

 
The Language Interpretation Problem: 

 
                                                Input:   -(17 * 83.56) + 72 / 12  
 
 
 
        Parse the input                                  ✸2 
 
 
   A tree of actions, whose structure corresponds to the structure of the input. 
 
 
    Compute the answer 
 
 
                                                           Output:   -1414.52 
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The Language Interpretation Problem: 
 
                                                  Input:   -(17 * 83.56) + 72 / 12  
 
 
    Lexical analysis of the input                  ✸1 
 
 
A string of input tokens, corresponding to the primitive objects of which the input is composed: 
                                                              -(id *   id)  +  id  /  id 
 
 
         Parse the input                                   ✸2 
 
 
 A tree of actions, whose structure corresponds to the structure of the input. 
 
 
    Compute the answer 
 
                                                               Output:   -1414.52 

 
 

yacc and lex 
 

 
        Lexical analysis of the input                     ✸1 
 
 
                 Parse the input                                 ✸2 
 
 
Where do the procedures to do these things come from? 
 
                                    regular expressions that describe patterns 
 

 
                                                                    lex 

 
 
    lexical analyzer                               ✸1 
 
 

 
                              grammar rules and other facts about the language 
 

 
                                                                 yacc 

 
 
             parser                                     ✸2 
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lex 
 
The input to lex:  definitions 
   %% 
   rules 
   %% 
   user routines 
 
All strings that are not matched by any rule are simply copied to the output. 
 
Rules: 
 
[ \t]+;             get rid of blanks and tabs 
 
[A-Za-z][A-Za-z0-9]*    return(ID);         find identifiers 
 
[0-9]+     { sscanf(yytext, "%d",  &yylval); 
   return (INTEGER);   }      return INTEGER  and put the value in yylval 

 
How Does lex Deal with Ambiguity in Rules? 

 
lex invokes two disambiguating rules: 
 
1. The longest match is prefered. 
2. Among rules that matched the same number of characters, the rule given first is preferred. 
 
Example: 
  integer      action 1 
  [a-z]+       action 2 
 
input:               integers                   take action 2 
   integer                 take action 1 

 
yacc 

(Yet Another Compiler Compiler) 
The input to yacc: 
 
 declarations 
 %% 
 rules 
 %% 
 #include "lex.yy.c" 
 any other programs 
 
This structure means that lex.yy.c will be compiled as part of y.tab.c, so it will have access to the same token names. 
 
Declarations: 
 
 %token name1  name2  … 
 
Rules: 
 
 V   : a   b   c 
 V : a   b   c      {action} 
 V : a   b   c   {$$ = $2}   returns the value of b 
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Example 
Input to yacc: 
 %token  DING  DONG  DELL 
 %% 
 rhyme   :      sound  place  ; 
 sound   :      DING  DONG  ; 
 place   :       DELL   
 %% 
 #include "lex.yy.c" 
 
state 0  (empty) 
 $accept : _rhyme $end 
 DING  shift 3 
 .  error 
 rhyme  goto 1 
 sound  goto 2 
state 1  (rhyme) 
 $accept : rhyme_$end 
 $end  accept 
 .  error 
state 2  (sound) 
 rhyme : sound_place 
 DELL  shift 5 
 .  error 
 place   goto 4 

state 3  (DING) 
 sound : DING_DONG 
 DONG  shift 6 
 .  error 
state 4  (place) 
 rhyme : sound place_ (1) 
 .   reduce  1 
state 5  (DELL) 
 place : DELL_  (3) 
 .   reduce  3 
state 6  (DONG) 
      sound : DING DONG_ (2) 
 .   reduce  2 

How Does yacc Deal with Ambiguity in Grammars? 
 
The parser table that yacc creates represents some decision about what to do if there is ambiguity in the input grammar rules.  
How does yacc make those decisions?  By default, yacc invokes two disambiguating rules: 
1. In the case of a shift/reduce conflict, shift. 
2. In the case of a reduce/reduce conflict, reduce by the earlier grammar rule. 
yacc tells you when it has had to invoke these rules. 
 

Shift/Reduce Conflicts  - If Then Else 
 

ST → if C then ST else ST 
ST → if C then ST 

 
What if the input is 
 
 if    C1    then    if    C2    then    ST1    else    ST2 
 
                                                                      1                  2 
Which bracketing (rule) should we choose? 
 
yacc will choose to shift rather than reduce. 
                                   

ST2         2 
else 
ST1         1 
then          
C2 
if 
then 
C1 
if 
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Shift/Reduce Conflicts - Left Associativity 
 
We know that we can force left associativity by writing it into our grammars. 
 
Example: 
 
E → E + T       E 
E → T 
T → id     E         T 
 
    E  T 
 
    T 
 
    id + id  +  id 
 
What does the shift rather than reduce heuristic if we instead write: 
 
E → E + E     id    +    id    +    id 
E → id 

Shift/Reduce Conflicts - Operator Precedence 
 
Recall the problem:        input:      id + id * id 
 
  T  Should we reduce or shift on * ? 
  + 
  E 
 
The "always shift" rule solves this problem. 
 
But what about:                            id * id + id 
 
  T  Should we reduce or shift on + ? 
  * 
  E  This time, if we shift, we'll fail. 
 
One solution was the precedence table, derived from an unambiguous grammar, which can be encoded into the parsing table of an 
LR parser, since it tells us what to do for each top-of-stack, input character combination. 
 

Operator Precedence 
 
We know that we can write an unambiguous grammar for arithmetic expressions that gets the precedence right.  But it turns out 
that we can build a faster parser if we instead write: 
 
 E → E + E | E * E | (E) | id 
 
And, in addition, we specify operator precedence.  In yacc, we specify associativity (since we might not always want left) and 
precedence using statements in the declaration section of our grammar: 
 
 %left '+'  '-' 
 %left '*'  '/' 
 
Operators on the first line have lower precedence than operators on the second line, and so forth. 
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Reduce/Reduce Conflicts 
Recall: 
 
2. In the case of a reduce/reduce conflict, reduce by the earlier grammar rule. 
 
This can easily be used to simulate the longest prefix heuristic, "Choose the longest possible stack string to reduce." 
 
[1]  E → E + T 
[2]  E → T 
[3]  T → T * F 
[4]  T → F 
[5]  F → (E) 
[6]  F → id  
 

Generating an Executable System 
 
Step 1:  Create the input to lex and the input to yacc. 
 
Step 2: 
 $  lex ourlex.l    creates lex.yy.c 
 $  yacc ouryacc.y    creates y.tab.c 
 $  cc -o ourprog y.tab.c -ly -ll   actually compiles y.tab.c and lex.yy.c, which is included. 
                     -ly links the yacc library, which includes main and yyerror. 
       -ll links the lex library 
Step 3: Run the program 
 $  ourprog 

 
Runtime Communication Between lex and yacc-Generated Modules 

 
 
   Parser                                 read the value of the token 
  
 
                ask                                return 
              for a                                  a                                         yylval       
            token                                   token 
 
 
 
   Lexical Analyer 
          set the value of the token 
 

 
Summary 

 
Efficient parsers for languages with the complexity of a typical programming language or command line interface: 
 
• Make use of special purpose constructs, like precedence, that are very important in the target languages. 
 
• May need complex transition functions to capture all the relevant history in the stack. 
 
• Use heuristic rules, like shift instead of reduce, that have been shown to work most of the time. 
 
• Would be very difficult to construct by hand (as a result of all of the above). 
 
• Can easily be built using a tool like yacc. 
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Languages That Are and Are Not Context-Free 
Read K & S 3.5, 3.6, 3.7. 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: Closure Properties of Context-Free  

Languages 
Read Supplementary Materials: Context-Free Languages and Pushdown Automata: The Context-Free Pumping Lemma. 
Do Homework 16. 

Deciding Whether a Language is Context-Free 
 
Theorem: There exist languages that are not context-free. 
 
Proof: 
(1) There are a countably infinite number of context-free languages.  This true because every description of a context-free 
language is of finite length, so there are a countably infinite number of such descriptions. 
 
(2) There are an uncountable number of languages. 
 
Thus there are more languages than there are context-free languages. 
 
So there must exist some languages that are not context-free. 
 
Example: {anbncn} 

Showing that a Language is Context-Free 
 
Techniques for showing that a language L is context-free: 
 
1. Exhibit a context-free grammar for L. 
2. Exhibit a PDA for L. 
3. Use the closure properties of context-free languages. 
 
Unfortunately, these are weaker than they are for regular languages. 

 
The Context-Free Languages are Closed Under Union 

 
Let G1 = (V1, Σ1, R1, S1) and 
      G2 = (V2, Σ2, R2, S2) 
 
Assume that G1 and G2 have disjoint sets of nonterminals, not including S. 
 
Let L = L(G1) ∪  L(G2) 
 
We can show that L is context-free by exhibiting a CFG for it: 
 
 

 
The Context-Free Languages are Closed Under Concatenation 

 
Let G1 = (V1, Σ1, R1, S1) and 
      G2 = (V2, Σ2, R2, S2) 
 
Assume that G1 and G2 have disjoint sets of nonterminals, not including S. 
 
Let L = L(G1) L(G2) 
 
We can show that L is context-free by exhibiting a CFG for it: 
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The Context-Free Languages are Closed Under Kleene Star 
 
Let G1 = (V1, Σ1, R1, S1)  
 
Assume that G1 does not have the nonterminal S. 
 
Let L = L(G1)* 
 
We can show that L is context-free by exhibiting a CFG for it: 

 
 
 
 
 

What About Intersection and Complement? 
 
We know that they share a fate, since  
 

L1 ∩ L2  = L1 ∪  L2 
 
But what fate? 
 
We proved closure for regular languages two different ways.  Can we use either of them here: 
1. Given a deterministic automaton for L, construct an automaton for its complement.  Argue that, if closed under complement 

and union, must be closed under intersection. 
2. Given automata for L1 and L2, construct a new automaton for L1 ∩ L2 by simulating the parallel operation of the two original 

machines, using states that are the Cartesian product of the sets of states of the two original machines. 
 
More on this later. 
 

 The Intersection of a Context-Free Language and a Regular Language is Context-Free 
 
L = L(M1), a PDA = (K1, Σ, Γ1, ∆1, s1, F1) 
R = L(M2), a deterministic FSA = (K2, Σ, δ, s2, F2) 
 
We construct a new PDA, M3, that accepts L ∩ R by simulating the parallel execution of M1 and M2. 
 
M = (K1 × K2, Σ, Γ1, ∆, (s1, s2), F1 × F2) 
 
Insert into ∆: 
 
For each rule  ((q1,          a, β),  (p1,       γ)) in ∆1, 
and each rule   (q2,          a,         p2)            in δ,  
                      (((q1, q2),   a, β), ((p1, p2), γ)) 
 
For each rule   ((q1,        ε, β),  (p1,        γ) in ∆1, 
and each state    q2                                     in K2,  
                       (((q1, q2), ε, β), ((p1, q2), γ)) 
 
This works because:  we can get away with only one stack. 
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Example 
 
L =       anbn                                                     ∩                                    (aa)*(bb)* 
 
                    b/a/                                             a 
             A                                 B                                                      1                         2 
 a//a                               b/a/                                              a 
                                                                 b 
        b 
                                                    3                         4 
               b 
((A, a, ε), (A, a))      (1, a, 2) 
((A, b, a), (B, ε))      (1, b, 3) 
((B, b, a), (B, ε))      (2, a, 1) 
       (3, b, 4) 
       (4, b, 3) 
A PDA for L: 

Don’t Try to Use Closure Backwards 
 
One Closure Theorem: 
 If L1 and L2 are context free, then so is  
 
    L3 = L1 ∪  L2. 
 
But what if L3 and L1 are context free? What can we say about L2? 
 
    L3 = L1 ∪  L2. 
 
 
Example: 
 
    anbnc* = anbnc* ∪  anbncn 

 
 

The Context-Free Pumping Lemma 
 
This time we use parse trees, not automata as the basis for our argument. 
 
               S 
 
 
 
                                        A   
 
 
                                                  A 
 
 
             u          v                       x                  y                z 
 
If L is a context-free language, and if w is a string in L where |w| > K, for some value of K, then w can be rewritten as uvxyz, 
where |vy| > 0 and |vxy| ≤ M, for some value of M.   
 
uxz, uvxyz, uvvxyyz, uvvvxyyyz, etc. (i.e., uvnxynz, for n ≥ 0) are all in L. 
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Some Tree Basics 
 
                                         root 
 
 
                                            height 
nodes 
 
 
            leaves 
 
                                                                      yield 
 
Theorem: The length of the yield of any tree T with height H and branching factor (fanout) B is ≤ BH. 
 
Proof:  By induction on H.  If H is 1, then just a single rule applies.  By definition of fanout, the longest yield is B. 
Assume true for H = n.   
Consider  a tree with H = n + 1.  It consists of a root, and some number of subtrees, each of which is of height ≤ n (so induction 
hypothesis holds) and yield ≤ Bn.  The number of subtrees ≤ B.  So the yield must be ≤ B(Bn) or Bn+1. 

 
What Is K? 

               S 
 
 
 
                                        A   
 
 
                                                  A 
 
 
             u          v                       x                  y                z 
 
Let T be the number of nonterminals in G. 
If there is a tree of height > T, then some nonterminal occurs more than once on some path.  If it does, we can pump its yield.  
Since a tree of height = T can produce only strings of length ≤ BT, any string of length > BT must have a repeated nonterminal and 
thus be pumpable. 
 
So K = BT, where T is the number of nonterminals in G and B is the branching factor (fanout).  

 
What is M? 

 
               S 
 
 
 
                                        A   
 
 
                                                  A 
 
 
             u          v                       x                  y                z 
 
Assume that we are considering the bottom most two occurrences of some nonterminal.  Then the yield of the upper one is at 
most BT+1 (since only one nonterminal repeats). 
 
So M = BT+1.  
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The Context-Free Pumping Lemma 
 
Theorem:  Let G = (V, Σ, R, S) be a context-free grammar with T nonterminal symbols and fanout B.  Then any string w ∈  L(G) 
where |w| > K (BT) can be rewritten as w = uvxyz in such a way that: 
• |vy| > 0, 
• |vxy| ≤ M (BT+1), (making this the "strong" form), 
• for every n ≥ 0, uvnxynz is in L(G). 
 
Proof: 
Let w be such a string and let T be the parse tree with root labeled S and with yield w that has the smallest number of leaves 
among all parse trees with the same root and yield.  T has a path of length at least T+1, with a bottommost repeated nonterminal, 
which we'll call A.  Clearly v and y can be repeated any number of times (including 0).  If |vy| = 0, then there would be a tree with 
root S and yield w with fewer leaves than T.  Finally, |vxy| ≤ BT+1. 
 

An Example of Pumping 
 
L = {anbncn : n≥ 0} 
 
Choose w = aibici where i > �K/3� (making |w| > K) 
 
               S 
 
 
 
                                        A   
 
 
                                                  A 
 
 
             u          v                       x                  y                z 
 
Unfortunately, we don't know where v and y fall.  But there are two possibilities: 
1. If vy contains all three symbols, then at least one of v or y must contain two of them.  But then uvvxyyz contains at least one 

out of order symbol. 
2. If vy contains only one or two of the symbols, then uvvxyyz must contain unequal numbers of the symbols. 
 

Using the Strong Pumping Lemma for Context Free Languages 
If L is context free, then 
     There exist K and M (with M ≥ K) such that 
          For all strings w, where |w| > K, 
               (Since true for all such w, it must be true for any paricular one, so you pick w) 
               (Hint: describe w in terms of K or M) 
           
               there exist u, v, x, y, z such that w = uvxyz and |vy| > 0, and 
        |vxy| ≤ M, and 
        for all n ≥ 0, uvnxynz is in L. 
 
We need to pick w, then show that there are no values for uvxyz that satisfy all the above criteria.  To do that, we just need to 
focus on possible values for v and y, the pumpable parts.  So we show that all possible picks for v and y violate at least one of 
the criteria. 
 
Write out a single string, w (in terms of K or M)  Divide w into regions. 
 
 
For each possibility for v and y (described in terms of the regions defined above), find some value n such that uvnxynz is not in L.  
Almost always, the easiest values are 0 (pumping out) or 2 (pumping in).  Your value for n may differ for different cases. 
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              v  y  n  why the resulting string is not in L 
 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
 
Convince the reader that there are no other cases. 
 
Q. E. D. 
 

A Pumping Lemma Proof in Full Detail 
 
Proof that L = {anbncn : n≥ 0} is not context free. 
 
Suppose L is context free.  The context free pumping lemma applies to L.  Let M be the number from the pumping lemma.  
Choose w = aMbMcM.  Now w ∈  L and |w| > M ≥ K.  From the pumping lemma, for all strings w, where |w| > K, there exist u, v, x, 
y, z such that w = uvxyz and |vy| > 0, and |vxy| ≤ M, and for all n ≥ 0, uvnxynz is in L.  There are two main cases: 

1. Either v or y contains two or more different types of symbols (“a”, “b” or “c”).  In this case, uv2xy2z is not of the form 
a*b*c* and hence uv2xy2z ∉ L. 

2. Neither v nor y contains two or more different types of symbols.  In this case, vy may contain at most two types of 
symbols.  The string uv0xy0z will decrease the count of one or two types of symbols, but not the third, so uv0xy0z ∉ L 

Cases 1 and 2 cover all the possibilities.  Therefore, regardless of how w is partitioned, there is some uvnxynz that is not in L.  
Contradiction.  Therefore L is not context free. 
 
Note: the underlined parts of the above proof is “boilerplate” that can be reused.  A complete proof should have this text or 
something equivalent. 
 

Context-Free Languages Over a Single-Letter Alphabet 
 
Theorem: Any context-free language over a single-letter alphabet is regular. 
Examples: 
 
L  = {anbn}  
L′  = {anan}  

= {a2n} 
= {w ∈  {a}* : |w| is even} 

 
L  = {wwR : w ∈  {a, b}*} 
L′  = {wwR : w ∈  {a}*} 
 = {ww: w ∈  {a}*} 
 = {w ∈  {a}* : |w| is even} 
 
L  = {anbm : n, m ≥ 0 and n ≠ m} 
L′  = {anam : n, m ≥ 0 and n ≠ m} 
 =  
 
Proof: See Parikh's Theorem 
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 Another Language That Is Not Context Free 
L = {an : n ≥ 1 is prime} 
 
Two ways to prove that L is not context free: 
 
1. Use the pumping lemma:   
Choose a string w = an such that n is prime and n > K.   

w = aaaaaaaaaaaaaaaaaaaaaaa 
                  u     v     x          y    z 
Let vy = ap and uxz = ar.  Then r + kp must be prime for all values of k.  This can't be true, as we argued to show that L was not 

regular. 
 
2. |ΣL| = 1.  So if L were context free, it would also be regular.  But we know that it is not.  So it is not context free either. 

 
 

Using Pumping and Closure 
 
L = {w ∈  {a, b, c}* : w has an equal number of a's, b's, and c's} 
 
L is not context free. 
Try pumping:  Let w = aKbKcK 
 
 
 
 
Now what? 
 
 
 
 
 

Using Intersection with a Regular Language to Make Pumping Tractable 
 
L = {tt : t ∈  {a, b}* } 
 
Let's try pumping:    |w| > K 
 
             t            t 
          u        v                 x            y                z 
 
What if  u    is  ε, 
 v    is w, 
 x    is ε, 
 y    is w,  and 
 z    is  ε 
 
Then all pumping tells us is that  tntn  is in L. 
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L = {tt : t ∈∈∈∈  {a, b}* } 
 
What if we let |w| > M, i.e. choose to pump the string     aMbaMb: 
 
Now v and y can't be t, since |vxy| ≤ M: 
 
             t            t 
          u        v                 x            y                z 
 
Suppose |v| = |y|.  Now we have to show that repeating them makes the two copies of t different.  But we can’t. 
 

L = {tt : t ∈∈∈∈  {a, b}* } 
 
But let's consider L' = L ∩ a*b*a*b* 
 
This time, we let |w| > 2M, and the number of both a's and b's in w >M: 
 
         1                  2                 3                4 
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb 
         t  t 
          u                v    x     y                z 
 
Now we use pumping to show that L' is not context free. 
 
First, notice that if either v or y contains both a's and b's, then we immediately violate the rules for L' when we pump. 
 
So now we know that v and y must each fall completely in one of the four marked regions. 

 
L' = {tt : t ∈∈∈∈  {a, b}* } ∩∩∩∩ a*b*a*b* 

 
|w| > 2M, and the number of both a's and b's in w >M: 
 
         1                  2                 3                4 
 aaaaaaaaaabbbbbbbbbbaaaaaaaaaabbbbbbbbbb 
         t  t 
          u                v    x     y                z 
 
Consider the combinations of (v, y): 
 
(1,1)   

(2,2) 

(3,3) 

(4,4) 

(1,2) 

(2,3) 

(3,4) 

(1,3) 

(2,4) 

(1,4) 
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The Context-Free Languages Are Not Closed Under Intersection 
 
Proof: (by counterexample) 
 
Consider L = {anbncn: n ≥ 0} 
 
L is not context-free. 
 
Let L1 = {anbncm: n, m ≥ 0}  /* equal a's and b's 

L2 = {ambncn: n, m ≥ 0}  /* equal b's and c's 
 
Both L1 and L2 are context-free. 
 
But L = L1 ∩ L2. 
 
So, if the context-free languages were closed under intersection, L would have to be context-free.  But it isn't. 

 
The Context-Free Languages Are Not Closed Under Complementation 

 
Proof: (by contradiction) 
 
By definition: 
 

L1 ∩ L2  = L1 ∪  L2 
 
Since the context-free languages are closed under union, if they were also closed under complementation, they would necessarily 
be closed under intersection.  But we just showed that they are not.  Thus they are not closed under complementation. 
 

 The Deterministic Context-Free Languages Are Closed Under Complement 
Proof: 
 
Let L be a language such that L$ is accepted by the deterministic PDA M.  We construct a deterministic PDA M' to accept (the 
complement of L)$, just as we did for FSMs: 
 
1. Initially, let M' = M. 
2. M' is already deterministic. 
3. Make M' simple.  Why? 
4. Complete M' by adding a dead state, if necessary, and adding all required transitions into it, including: 

• Transitions that are required to assure that for all input, stack combinations some transition can be followed. 
• If some state q has a transition on (ε, ε) and if it does not later lead to a state that does consume something then 

make a transiton on (ε, ε) to the dead state. 
5. Swap final and nonfinal states. 
6.    Notice that M′ is still deterministic. 
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An Example of the Construction 
 
L = anbn           M accepts L$ (and is deterministic): 
   
                 a//a                        b/a/                      
                                      b/a/                         $/ε/ 
                           1                             2                             3 
                                                 
                            $/ε/ 
 
Set M = M'.  Make M simple. 
            a/a/aa 
                      a/Z/aZ                        b/a/                      
                ε/ε/Z                      b/a/                             $/Z/ 
        0                            1                            2                            3 
                                                 
 
                                              $/Z/ 
 

The Construction, Continued 
 
Add dead state(s) and swap final and nonfinal states: 
           a/a/aa 
                       a/Z/aZ                        b/a/                      
                ε/ε/Z                      b/a/                             $/Z/ 
        0                            1                            2                            3 
                                                 
 
                                              $/Z/ 
 
               b/Z/, $/a/          
                                                         a//,  $/a/,  b/Z/ 
                                   4 
 
                                              a//, b//, $//, ε/a/, ε/Z/           
 
Issues: 1) Never having the machine die 

2) ¬ (L$) ≠ (¬L)$ 
3) Keeping the machine deterministic 

 
Deterministic vs. Nondeterministic Context-Free Languages 

 
Theorem: The class of deterministic context-free languages is a proper subset of the class of context-free languages. 
 
Proof: Consider L = {anbmcp : m ≠ n or m ≠ p}    L is context free (we have shown a grammar for it). 
 
But L is not deterministic.  If it were, then its complement L1 would be deterministic context free, and thus certainly context free.  
But then  

L2 = L1 ∩ a*b*c* (a regular language)  
would be  context free.  But 
  L2 = {anbncn : n ≥ 0},  which we know is not context free. 
 
Thus there exists at least one context-free language that is not deterministic context free. 
 
Note that deterministic context-free languages are not closed under union, intersection, or difference. 
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Decision Procedures for CFLs & PDAs 
 

Decision Procedures for CFLs 
 
There are decision procedures for the following (G is a CFG): 

• Deciding whether w ∈  L(G). 
• Deciding whether L(G) = ∅ . 
• Deciding whether L(G) is finite/infinite. 

 
Such decision procedures usually involve conversions to Chomsky Normal Form or Greibach Normal Form.  Why? 
 
Theorem:  For any context free grammar G, there exists a number n such that: 

1. If L(G) ≠ ∅ , then there exists a w ∈  L(G) such that |w| < n. 
2. If  L(G) is infinite, then there exists w ∈  L(G) such that n ≤ |w| < 2n. 

 
There are not decision procedures for the following: 

• Deciding whether L(G) = Σ*. 
• Deciding whether L(G1) = L(G2). 

 
If we could decide these problems, we could decide the halting problem.  (More later.) 

 
Decision Procedures for PDA’s 

 
There are decision procedures for the following (M is a PDA): 

• Deciding whether w ∈  L(M). 
• Deciding whether L(M) = ∅ . 
• Deciding whether L(M) is finite/infinite. 

 
Convert M to its equivalent PDA and use the corresponding CFG decision procedure.  Why avoid using PDA’s directly? 
 
There are not decision procedures for the following: 

• Deciding whether L(M) = Σ*. 
• Deciding whether L(M1) = L(M2). 

 
If we could decide these problems, we could decide the halting problem.  (More later.) 
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Comparing Regular and Context-Free Languages 
 
Regular Languages 
 
• regular exprs. 

• or 
• regular grammars 
• recognize 
• = DFSAs 
• recognize 
• minimize FSAs 
 
• closed under: 

∗ concatenation 
∗ union 
∗ Kleene star 
∗ complement 
∗ intersection 

• pumping lemma 
• deterministic = nondeterministic 

Context-Free Languages 
 
• context-free grammars 
 
 
• parse 
• = NDPDAs 
• parse 
• find deterministic grammars 
• find efficient parsers 
• closed under: 

∗ concatenation 
∗ union 
∗ Kleene star 

 
• intersection w/ reg. langs 
• pumping lemma 
• deterministic ≠ nondeterministic 
 

 
 
 
 

Languages and Machines 
 
 

Recursively Enumerable  
Languages 

 
Recursive  
Languages 

 
Context-Free 
Languages 

 
Regular 

Languages 
 

FSMs 
                           D     ND 

         
PDAs 

 
 
 

 
 


