Two Dimensional NMR-Part II

Dr. Darshana Mehta

School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain – 456 010, Madhya Pradesh, India

¹H-¹H COSY (COrrelated SpectroscopY)

- The pulse sequence includes two
 90° pulses separated by an evolution time t₁.
- t₁ is varied to obtain a data surface,
 then a two dimensional FT is applied
 to give a spectrum that shows
 correlations based on J-coupling.
- The diagonal peaks of COSY are dispersive, and the cross peaks are antiphase. The long tails of dispersive peaks can make it difficult to resolve cross peaks near the diagonal.

¹H-¹H COSY (COrrelated SpectroscopY)

Schematic COSY spectrum for two coupled spins, A and X

- Homonuclear correlation spectroscopy is a most useful experiment to find coupling information.
- In the COSY spectrum, both vertical and horizontal axes provide proton chemical shift.
- The diagonal peaks correspond to the normal 1D spectrum.
- There are also cross peaks that appear as a result of spinspin coupling.
- Cross peaks must always appear as a pair in matched positions in the diagonal peaks.

Advantages

- Simplest type of 2D experiment
- ✤ Easiest to set up
- Forgiving of pulse width errors

Disadvantages

- Has inherently low resolution and relatively low sensitivity compared to other types of proton-proton 2D's
- Contains the least amount of information of proton-proton 2D experiments
- Should be used only for routine assignment of low molecular weight compounds that have little resonance overlap

The Multiple Quantum Filter (MQF)

A1, A2, X1 and X2 are Single Quantum Transitions (SQ). Total Spin Change is 1 DQ: Double Quantum. Total Spin Change is 2 ZQ: Zero Quantum. Total Spin Change is 0 (zero)

Double Quantum Filtered COSY (DQF-COSY)

- Same information as COSY but removes single quantum transitions (large singlet peaks from Me groups), meaning we can see things closer to the diagonal.
- Improved lineshapes and resolution
- It is phase sensitive, we acquire 2 x number of increments (real and imaginary). Get coupling information from phases of correlation peaks.
- Coupled diagonal will be absorbtive antiphase rather than dispersive, and uncoupled peaks are strongly attenuated.

Phase Sensitive COSY (DQFCOSY)

(Most often used for assignment in small molecules)

Double Quantum Filtered COSY (DQF-COSY)

- The DQF-COSY sequence differs from the basic COSY experiment by the addition of a third pulse and the use of a modified phase cycle or gradient sequence to provide the desired selection.
- Thus, following t1 frequency labelling, the second 90 pulse generates multiplequantum coherence, which is not observed in the COSY-90 sequence since it remains invisible to the detector.
- This may, however, be reconverted into SQC by the application of the third pulse and hence subsequently detected.
- Icleans up the spectrum by reducing noncoupled systems (e.g. CH3 singlets)
- The required phase cycle or gradient combination selects only signals that existed as DQC between the last two pulses, whilst all other routes are cancelled, hence the term DQF-COSY.

COSY spectrum of Ethyl Vinyl Ether

Fig:1. It looks like a mountain range viewed from the air because intensity is the third axis. These "mountain-like" spectra (known as stack plots) are not the spectra actually used to identify a compound.

Instead, the compound is identified using a contour plot Fig:2, where each mountain in Fig:1 is represented by a large dot (as if its top had been cut off). The two mountains shown in Fig:1 correspond to the dots labelled B and C in Fig: 2

Fig:2, the usual one-dimensional ¹H NMR spectrum is plotted on both the x- and y- axes.

X

COSY spectrum of Ethyl Vinyl Ether

To analyze the spectrum, a diagonal line is drawn through the dots that bisect the spectrum. The dots that are *not* on the diagonal (A, B, C) are called *cross peaks*. Cross peaks indicate pairs of protons that are coupled.

For example, if we start at the cross peak labeled A and draw a straight line parallel to the y-axis back to the diagonal, we hit the dot on the diagonal at ~ 1.1 ppm produced by the H_a protons. If we next go back to A and draw a straight line parallel to the x-axis back to the diagonal, we hit the dot on the diagonal at ~ 3.8 ppm produced by the H_b protons. This means that the H_a and H_b protons are coupled.

TOtal Correlation SpectroscopY (TOCSY) HOmonuclear HArtman-HAhn spectroscopy (HOHAHA)

Like COSY in appearance

- Relies on relayed coherence during spin-lock mixing time (magnetization exchange through scalar coupling)
- ✤ The longer t_{mix}, the longer the correlations (30 180 ms gives 3 7 bonds)
- Relays can occur only across protonated carbons – not across quaternary carbons (spin systems)
- Very useful for systems containing discrete units eg proteins and polysaccharides

TOtal Correlation Spectroscopy (TOCSY)

In general, the TOCSY mixing time determines the number of bonds over which signal can be Transferred, assuming that none of the coupling Constants = 0

- Powerful variant of the COSY experiment
- Transfers magnetization throughout a spin system, provided that no coupling = 0
- * Length of the mixing time determines how far the magnetization
 - is transferred (i.e. how many bonds)
- Longer mixing = greater transfer, but < signal</p>
- Typical mixing times are 30-200 msec
- Magnitude of mixing time related to 1/2J for smallest coupling

TOtal Correlation SpectroscopY (TOCSY)

- TOtal Correlation SpectroscopY(TOCSY) is one of the principal experiments used in establishing connectivity between nuclei of scalar coupled spin systems.
- The experiment is designed to eliminate Zeeman contributions from the interactions of isotropically coupled spin systems.
- The method is based on the homonuclear cross polarization technique, i.e. by using an MLEV-17 pulse sequence to spin lock the magnetization to obtain polarization transfer.
- Under this condition, coherence migrates in an oscillatory manner throughout the entire spin system. This technique is therefor mostly used for peptides or oligosaccharides, since it could identify a single residue.
- For complex molecules, the resulting TOCSY spectrum provides a reliable identification of spin systems that cannot be resolved by other methods.
- A major advantage of TOCSY is that net magnetization transfer occurs and a phase sensitive 2D spectrum with all peaks in the absorption mode can be obtained.

TOtal Correlation SpectroscopY (TOCSY)

TOtal Correlation SpectroscopY (TOCSY)

Heteronuclear Correlation Spectroscopy (HETCOR)

- * The principles of HETCOR are precisely analogous to COSY. A different experimental regime however is required since two observing nuclei with different Larmor frequencies are involved. That is why this technique is refer to H, X-COSY, where X could be ¹³C, ¹⁵N, ³¹P, ²⁹Si etc.
- The experiment is used to correlate the chemical shifts of X-nuclei with the chemical shifts of protons coupled with the X-nuclei.
- The assignment of one member of a spin-coupled pair leads immediately to the assignment of the other.
- Most NMR instruments with two channels can perform the experiment. The 90 degree pulses for X nucleus and proton need to be calibrated.

Heteronuclear Correlation Spectroscopy (HETCOR)

ppm

Heteronuclear Correlation Spectroscopy (HETCOR)

Distortionless Enhancement by Polarization Transfer (DEPT-NMR) experiment

- Run in three stages
 - 1. Ordinary broadband-decoupled spectrum
 - Locates chemical shifts of all carbons
 - 2. DEPT-90
 - Only signals due to CH carbons appear
 - 3. DEPT-135
 - CH₃ and CH resonances appear positive
 - CH_2 signals appear as negative signals (below the baseline)
- Used to determine number of hydrogens attached to each carbon

- For reasons of sensitivity carbon spectra are usually recorded in the fully proton decoupled mode. The disadvantage is that information about the number of attached protons is lost.
- DEPT spectra are a very valuable source of such information, which is very useful for signal assignment. In addition, the polarization transfer in DEPT spectra leads to considerably higher signal intensities.
- * In the DEPT experiment the proton polarization (the population difference between a and β levels) is transferred via the large ¹JC,H-couplings onto the carbons. In addition, DEPT experiments allow us to edit signal phases according to the number of directly attached protons.
- In the DEPT-135 experiments, methyl and methine signals have positive and methylene protons negative phases (or vice versa), whereas the quaternary carbons are completely missing.

¹³C spectra is perturbed based On the number of attached ¹H

Takes advantage of different patterns of polarization transfer ¹H-¹³C NOE

The DEPT spectrum is much more sensitive than a normal ¹³C spectrum because the observed carbon signal originates from an attached proton and is transferred to the carbon ("polarization transfer"). The down-side to this is that carbons without attached protons (quaternary carbons) cannot be observed.

APT gives all of the information of a normal carbon spectrum with somewhat reduced sensitivity, and it tells you if the number of attached protons is odd (CH₃ or CH) or even (CH₂ or quaternary). DEPT is much more sensitive than a normal carbon spectrum, and it can unambiguously identify the CH₃, CH₂ and CH carbon peaks. This requires acquiring and processing three separate spectra, however, and does not detect the quaternary carbons or solvent at all.

- C Subtract DEPT-135 from broadband-decoupled spectrum
- CH DEPT-90
- CH₂ Negative DEPT-135
- CH₃ Subtract DEPT-90 from positive DEPT-135

HMBC data is ambiguous

(2 or 3 bond correlations – impossible to tell which)