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fiii) g b

: ; " fiv) a b ¢
] 7 2 l!]if:'rtepl.‘i 2 = i intercepts
: reciprocals 112 ~113 =13 BiacEs
2 clear fractions 3 -2 -2 clegr:ftaction
Hence, the Miller in

dices are (122).

Note, The negative sign

Hence, the Miller indices are (3 2 2)
within parentheses,

In the Miller indices is indicated by placing a bar on the integer. The Miller indices are enclosed

Interplanar Spacing i 3 :
s 8 1 a Crystal Syste e ; " . o nce
dyyy is given by ystem, 1t can be shown that in a crystal, the interplanar dista

W) = (h/a)? + (k/B)? + (1/c)?

..(12)
where i, k, | are the Miller indices of the planes and q, b, c are the dimensions of the cell,
For a cubic System, a = b = ¢ sp that from Eq. 12,
diyy = all? + i? + 2] (13)
For a retragonal System, a = b # ¢ 50 that
Wdig)* = (2 + k)02 + 2 . (14)
For an orthorhombic System, a # b # ¢ so that
Udwl = h%a® + k22 + 22 -+(15)

Example 12. The parameters of an orthorhombic unit cell are =50 pm, 5=100 pm, c=150 pm. Determine the
Spacing between the (123) planes, '
Solution : For an orthorhombic unit cell, the interplanar distance,

Wdw® = (Pa?) + (2% + (212
V(dpn®

djﬂ. is given by

-..(Eq. 15)

1/(d)23)* = (1/50 pm)* + (2/100 pm)? + (3/150 pm)? = 3(1/50 pm)®
Udiz3 = /3 /50pm so that 23 = 50pm /3 = 29 pm

Example 13. The density of Li metal is 0:53 g em-? and the separation of the
Determine whether the lattice is f.c.c. or b.c.c. M(Li)=6-941 g mol™!,

Solution : Density, p =053 gem =530 kg m
For the cubic system, dyy; = allh* + k2 + P2

a : -12
= = 350 pm = 350x107* m i
dioo 3 o |

We know from Eq. 1, that 3 Birvie
p = nMI(NgV) = nMI(Na’) 2

(100) plancs of the metal is 350 pm,

N (530kgm™)(6:022x10% mol™)(350x 102 m)® _ g0
n = pA}' T 6:941 x107° kgmol"

. i ithi ™ shals lll':'E’.
LR I 3 r an fl: c la”iw n 4 al'l.d or a h- e.C. |atT.ICE. n des. HEJ:IL'E. Ill- um abcg.c fﬂ"'f
i ' or by ] h
hOWH mn EXEImp = um has b

X-RAY DIFFRACTION

i suggested the possibility of diffraction of
on Laue (1379}131_??3;‘ ::hi;: ][i:: wﬁﬁe length of X-rays was of about the
for [hlS.SUSE‘ES 1[ 1. von Laue was awarded the 1914 Physics No_h?] !i'r.tzc
ances in a crysta ;zals In fact, W.H. Bragg sur;ceedt:t{ in dlﬁra_(.li.rlg
f X-rays by crystal -n has proved to be highly useful in determining
This ubf,ervqtmthe study of a number of properties of X-ray
in

The German physicist M. v
X-rays by crystals. The reason
Same order as the interatomic dist
for his discovery of diffraction 0 o
X-rays from sodium chloride crysm].s T a2
Structures and dimensions of crys

themselves,
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i i flection of

of ordinary light, the re
b the wave length of the X-rays and
tion which gives 2 simple relation
rystal and the angle of reflection,

The Bragg Equation. Bragg pointed out that unlike reflecti
X-rays can take place only at certain angles which are determined by
the distance between the planes in the crystal. The fundamental equd
between the wave length of the X-rays, the interplanar distance in the €
is known as the Bragg equation.

Derivation of the Bragg Equation.
Consider Fig. 10. The horizontal lines in
this figure represent parallel planes in the
crystal structure separated from one another
by the distance d. Suppose a beam of X-
rays falls on the crystal at glancing angle
B, as shown. Some of these rays will be
reflected from the upper plane at the same
angle © while some others will be absorbed
and get reflected from the successive layers,
as shown. Let the planes ABC and DEF be
drawn perpendicular to the incident and Fig. 10. X-ray reflections from a crystal.
reflected beams, respectively. The waves — ;
reflected by different layer planes will be in phase with one another (i.e., will coincide with one another
in the plane DEF) only if the difference in the path lengths of the waves reflected _from the successive
planes is equal to an integral number of wave lengths. Drawing OL and OM perpendicular to the incident
and reflected beams, it will be seen that the difference in the path lengths (say, d) of the waves reflected
from the first two planes is given by

§=LN + NM ...(16)
This should be equal to a whole number multiple of wave length A, i.e.,
LN + NM =nh L7
Since the triangles OLN and OMN are congruent, hence LN = NM.
- 2LN = n) or 2dsin 0 = nA .(18)

This is the Bragg equation. Knowing 0, n and A, d can be calculated.

For a given set of lattice planes, d has a fixed value. Therefore, the possibility of getting maximum
reflection (i.e., the possibility of getting reflected waves in phase with one another) depends upon 0. If 6
s increased gradually, a number of positions will be found at which the reflections will be maximum. At
these positions, n will have values equal

to 1, 2, 3, 4, 5, etc. Generally, in F: 220 m =
+

experiments on X-ray reflections, n is
set as equal to 1. If A is known, 1t 1S

possible 10 determine d, the distance | Target
hetween atomic planes in the crystal by Focussin
determining 0 experimentally. On the other . T slit

hand, if d is known, 2 can be evaluated.

T c

Experimental Methof!s. The X-ray 3 . ool
diffraction techniques used in the study of _ - e
crystals are of two types known as the X-ray tube %{;rml Sample
rotating crystal technique and the powder | e
technique. Both the techniques make “5“; 2
of the X-ray spectrometer, the SEing o s
which for the former technique 15 shown | b b sl
in Fig. 11. ‘8- 11. An X-ray spectrometer.
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: : , aximum give the
value of 0. The Proce !nmsﬂtl_on chamber, The angles for which reflections are mdxlml:nw[%ich i
i 58 I carried out for each plane of the crystal. The lowest angle 2

on : t higher
angle at which the l;.l{;i]:;fucnrresp“"fls to n=1. This is called the first order mﬂt{cn‘unihghfegc?id o%dcr
reflection, and s qop. ™ reflection oceurs again, corresponds to n=2. This is

The va] -
to be 5'9°a EE: ‘?l; edfgr tEe first order reflection from the three faces of sodium chloride crystal are fm:Eg
same in each case nu—, '2°, respectively, Applying the Bragg equation and knowing that n and A afre

» the distance d between successive planes in the three faces will be in the ratio 0

VSin5-9° : 1/sin8:4° ; 1/5in 595 = g.g 16:84 1 11:04 = 1-00 : 0-70 : 1-14

This ratio ; .
centred ;;uf;mﬁf very C.I Ose to that expected to exist between spacings along the three planes of a face
- A0us, sodium chioride has Jace-centred cubic structure. :

Powder Method - The Debye-Scherrer Method. -
The powdelr method is more widely used particularly for i
crystals with simple structures. The powder, in fact, '
consists of many small crystals which are oriented in /'{
all possible directions. As a result of this, X-rays are
scattered from all sets of planes (e.g., 100, 110, etc.). ~--
The scattered rays are detected by using an X-ray- |
sensitive film. The principle of the method is illustrated

in Fig. 12. The substance to be examined is finely \ _
powdered and is kept in the form of a cylinder inside a Film
thin glass tube. A narrow beam of X-rays is allowed to X-ray

fall on the powder. The diffracted X-rays strike a strip beam S::SL':}' g;;

i i rm of a circular
:Ic{ﬂ:;tgﬁ;fvﬂh:z {;].leﬁagLr:;gEd mithetn < Fig. 12. The powder method for X-ray diffraction.
In this method, no rotation is necessary since the powder sample already contains microcrystals
arranged in all possible orientations. Hence,_ a large number of them wil! have thei_r lattice planes in
correct positions for maximum X-ray reflection to occur. As a result of this we get lighted areas in the
form of arcs of lines at different distances from the incident beam, as shown. These distances can be
converted into scattering angles to be used in the Bragg equation for different planes of the crystal,

. e S i W.L. Bragg (1890-1971) sh
cists W.H. Bragg (1862-1942) and his son gg ) shared the 195
"!‘he Bnl;mlh Il:a},i-:iil for the analysis of crystal structure with X-rays. W.L. Bragg became at 25 the
Physics Nobe The Bragg equation is named after both the father and ¢he son,

youngest Nobel Laureate in history.
i in orthorhombic system with the unit cell dimensions a=542 PM, 5=917 pm ana
for first order X-ray reflections from (100), (010) and (111) plangs u;ﬂg

0; crystallizes

Example 14. KI¥ he diffraction angles

¢=645 pm. Calculaie t

radiation with wave Jength=154-1 pm. N
I
Solution : " 52::,-3“ smm o
For an orthorhombic SY i 2 = (h-"ajl + (kb)* + W) g
,f(dm)l (1/542 pm)?* + (01917 pm)? + (0/645 pm)? = (1/542 pm)?
1{dw) =
doto —p=917pm and djn
Similarly. o . -~

For first order reflection,

..
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i > 154-1pm_ _ |y 42  whenee Oy = 8°10
sinfllyg = - __'S-dﬂ = 2

d”m, .2 p_ el pl ) g’
i A 154-1pm_ _ .084 whence Qoo = 4° 4
sinlppn = e o

2dgyy 2917 '

Lpm hence By = 11° 46

sinOyy = A = 154-1p1 =) 204 whe |

2dy,, 2% 378pm

with 2.=154 pm, the (100), (010) and (001
25, 3° 28 and 10° 23', respectively, I the
and the number of HgCly molecules in th

Example 15, HgCl; crystallizes in orthorhombic system. Using radiation

(4]
reflections (first order) from HgCly in an X-ray diffractometer occur :.lt '.-'."
density of the crystal is 5-42 g em-?, calculate the dimensions of the unit ce

unit cell. M(HgCly)=271+5 g mol™',
Solution : Dimensions of the unit cell ¢ For first order reflections, #= 1.
2dysin Oy =L sothat dyy = M2 sin Opy
For the orthorhombic system,
Wdp)? = (h/a)* + (kib)? + (/c)*
Wdio? = (Vaf + (0/b)F + (0/c)? = l/a?
& dipn = @ = Af2sin 0,9 = 154 pm/2sin (7° 25") = 597 pm
Similarly, dojg = b = 154 pm/2 sin 3° 28’ = 1270 pm
dyy = ¢ =154 pny/2 sin 10°13' = 434 pm
Number of molecules in unit cell : The volume of the unit cell,
V = abe = 597x1270%434 pm® = 3-29% 102 m?
p = M _ © (n)(271-5gmol™")
Y _ VN - (3-29x107m?)(6-022 x 10" mol 1)
1:37nx108 g m™ = 1:37 nx10° kg m>
p (given) = 542 gcm = 5420 kg m™?
J n =5420kg m31-37 x 1P kg m3 = 397~ 4
Since n=4, hence there are 4 molecules of HgCl, per unit cell. |

Hence,

Example 16. Calculate the angle at which (a) first order reflection and (b) second order reflection will occur in an

X-ray spectrometer when X-rays of wave length 1-54 A i - i
b ity y gt are diffracted by the atoms of a crystal, given that the

Solution : (a) For first order reflection (1=1), the Bragg equation is 2d sin § = A

0 = sin™! (A2d) = sin”! (1-54 A/8-08 A) = sin"! (0:191) = 190
(b) For second order reflection (n = 2), the Bragg equation is 2d sin 0 = 2a

; 6 = sin”\(Md) = sin"(1-54/4-04) = sin"1(0-381) = 220 24'

Example 17. The density of LiF is 2601 g cm™. The (111) first orde
occurs al 8°44' when X-rays of wave length 70:8 pm are used, If there
Avogadro’s number. LiF crystallizes in the cubic system, Li= 6939,

59

r reflection in the X-ray diffraction from Lif

a p
F= 18-33;? o m“llf-?fules per unit cell, calculat®

Solution: 2y sin@yy = nk; n=1 for first order reflection
. yy ___108pm
250y, 2 sin(8°447) - >33 pm

di

Also, for the cubic system,
dy = all? + K + g2

din =allP + 124 2 o a1 Wthata = [3 4
¥ " 4
i . a = V3 X233 pm = 40356 pm = 403-56x 10-12
nsity, P =MV =260l gem? (given)= 2,601 kg 3
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11, hence,

-3 Lo 1ol
= 425937 g molly= 103745 g mol- =103-748 x 10~ kg mo
V=N Mip

"\f-l = "f

= | =1
_ 103-748 %102 kg mol

= 6-49% 10 mol™!
T 3
(2,601kgm™)(403.56 x 1072 m)
This valye COmpares very well with the

accepted value of 6-022 %102 mol-!.

) i - ic system. We know
varticular importance g discuss the X-ray diffraction patterns of a cubic sy
that for a cubijc System, the interplanar distance dy, is given by
Ay = al(h? + 2 4 A

k19
Combining this result with the Bragg equation, viz., L = 2dy,; sin 0y, we get
g 2asin B L0}
RT3
: S Oy = (OWZf4a?) (12 + 2 4 2) = K(? + 12 + P) --21)
where K=32/4g2, K has a constant val

ue for a given cubic crystal and a given wave length A.
We can use Eq. 21 for

predicting the diffraction patterns of the three types of lattices of the cubic
System, as illustrated below.

L. Primitive Cubic Lattice,
indices A, k, and [, we construct

»...) for the Miller
in the form A2 42412,

cannot be written
0 7K. The diffraction lines will be observed at

thus consist of a set
r series of six lines,
TABLE 3

which diffraction lines are observed for 5
primitive cubic lattice

R R - O RS S
SN R e T 8 5 ™

siffy; K 2%k 3K &K K &

2. Body-Centered Cubic Lattice. Using Eqs. 19 ang

: 19 and 20 ang Integral valyeg ©, 1,2
I, we construct Table 4. We see that all diffraction lines for whi L

. ch (h+k+1) * 1;...)"[‘0-.- h
absent. We observe lines at angles shown in Table 4. %

mt&ger' dre
TABLE 4 e

d angles (sin? 0, values) for which diffrace: ..
A v for a hudy:cenlred cubic lattice ractioy lines e Obseryeq

- P
{20 20 21 70 e
e 100 10 11 221 o
a a a el 320
a - G iy I N
d ,f d ﬁ 1 a
Tk 2 = pe s 0 ?lz
Sil'lzemd X IM I,ZK
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3. Face-Centred Cubic Lattice. Proceeding as above,
diffraction lines are observed only from those planes for which
or all even. We observe diffraction lines at angles shown in Table 5.

we construct Table 5. We see that e
the values of h, k and [ are either all odg

TABLE 5

¢ H ines are
Interplanar distances and angles (sin? 0 values) for which diffraction line
observed for a face-centred cubic lattice

it SN
30
W10 10 1 X0 20 210 B gy oW e
a a
a a a s
i R s J11 V12
sin® Oy ) ST ¢ 8K nK 12K
The X-ray diffraction patterns for the three types of cubic lattices are collectively shown
in Fig. 13.
8
i =
25 o i =1 — 4 = —
Plan:s§§:§§; E:;Eﬁﬁﬁ =3
IK_2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K
Primitive

Body-centred

Face-centred

IK 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K ‘13K 14K 15K 16K

Fig. 13. X-ray diffraction patterns for the three types of cubic lattices.

From the above discussion we see that extinctions (i. e.,missing reflections) in the diffraction
patterns can help in distinguishing between the three types of cubic lattices. In the X-ray
diffraction studies, the crystallographer searches for the missing reﬂections- It should be
noted that whereas the spacing between the lines of a primitive cubic systeln‘ is equal to K
(with a gap after the 6th, 14th and 22nd, etc., lines) the spacing between lines 0? a body-
centred cubic system is equal to 2K. Thus, the number of lines obtained in the diffraction
pattern can help in qis!:inguisl}ing between these two systems. Afier the identification of the
diffraction pattern, it is possible to assign each line with the correct values of the Miller
indices A, k and /. From the measurement of any one of these lines, we can d ine the
value of a, the length of the edge of the cube, by using the equation , an determin

a = (M2 sin Oy) (0 + k2 + R)\2 . @)
If the lines are indexed correctly, the same value of q is obtained from all the values of
sin BW. ; — 3

_ray Diffraction Pattern for Tungsten Crystal, - i i
for t{l{n;stin crystal is shown in Fig. 14, 3 e X LS P?‘“ern

} 4 - =
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We notice that there g Variation in

of hki planes. This i .
frct:'i planes ﬁ)taving high ;iﬂﬁ":?sl‘lll:slll}' due 10 the variation of density of ntom;; I:e'b\"
: . A Ve ri Ty i | P
o more intense diffracted be Sy give rise to a better X-ray diffraction

am,
— /

for different

intensity of the diffracted X-ray Dt o e planes-
roducing

=
H
]
E 200
&
o
a8
110
5 211 310 121
E 220 IH__JL
v
g |
Z 10 | i ' ' ‘
= 40 60 80 100 120 140
ANGLE OF INCIDENCE, 0
Fig. 14. X-ray diffraction pattern for tungsten crystal.

If the crystal contains more than one kind of atoms, the atom containing greater number
of electrons scatters the X-rays to a greater extent. It is found that the scattering PG‘W""_"-"“’S
atom is directly proportional to the number of electrons in the atom. Thus, when the unit ce
of a crystal contains hydrogen atoms and other heavier atoms, the scattering effect of
hydrogen atoms is overshadowed by that of the other atoms which contain larger number of
electrons. Hence, the positions of hydrogen atoms in the unit cell of a crystal cannot be
determined from the X-ray diffraction pattern. Their positions can be determined by neutron
diffraction. We shall discuss this aspect a little later in this chapter.

Example 18. The X-ray diffraction pattern of silver, known to crystallize in the cubic system, was obtained using
X-rays with wave length 154-1 pm. The first six lines occurred at the following angles : 19-08°, 22-17°, 32:26°, 38-74°,
40-82° and 49-00°. (a) Determine the type of the cubic system, (b) Calculate the length of the edge of the ke
(c) Calculate the interplanar distance of the plane (111). ‘

Solution : (a) From Eq. 21, sin? Oy = K (1 + &% + F) where K = A¥/da? ,

We construct the following table with K = 0-0356 :

- s 217 32:26° 3874° a0 82° 49-00°
— i = i 06257 0-6536 07547
sin” 6 01067 0-1424 0-2848 P = R
[ K K 8K e — = &
Comparing this patern with that g1V in Fig. 13, we see that silver crystallizes in Face-centreq cubic system,
fb) From Eg. 22, . ?Eﬂ%_ﬁ;? R+ k2 + P\

The reflection at 19-08° is due to the (11 1) plane.
_dstdpm g+ 12+ 19! = 4086 pm
T 2k 0-3268

dﬂ:l' :a,‘r[hz-{-kz‘f'lcjl'z

{c) From Eq. 13,
dyyy = 4086 pn(1 + ¥+

192 = 408-6 Pm/T < 235.9 P

Scanned with CamScanner



o

THE SOLID STATE

112 1 unit cell. Determine whj
Example 19. AgClhasa face-centred cubic unit cell whereas CsCl has l} |""E"(~:"I"_‘:;'E (b) CsCl ': 100, 010, um":;l u!{:;t’

the following Miller indices are permitted in the X-rﬂ-:lrif' g:j?g;‘z‘"?tll’aggnﬁl(?l 2 j:1 22, 211, 121, 112. o

020, 002, 110, 101, 011, 120, 102, 012, 210, 201, 021, 220, 202,022, 111, 282 2+ &% B0 ingices are even or all

3 . ed reflections
Solution : {a) AzCl has a f.c.c. unit cell. So, the only allowed refl = —(P0=002 and 220=202=022
odd, giving Miller indices 200, 020, 002, 220, 202, 022, 111 and 222, Since a=b=c, 200=020 '

only four peaks will be observed corresponding to 200, 220, 111 and 222
fh) CsCl hasab.c.c. unit cell, So, the only allowed reflections are
110=101=011; 220=202=022 and 211 = 121=112.
Fourier Synthesis of Electron Density in a Crystal
Since X-rays are scattered by the electrons in a crystal, th .
is to determine the electron density p(xyz) as a function of the coordinate
electrons and the size of the atomic orbitals both vary from atom to atom,
scattering efficiencies. The scattering factor f of an atom is defined as

those in which h+k+1= even, giving 200:02{}::{)02;

e ultimate goal of X-ray crystallography
s x, ¥, 2. Since the number of
different atoms have differey

an
kr

[ = 4nIp(r) 5";” rldr .(23)
n .
where p(r) is the spherically symmetric electron density (number of electrons per unit volume) of- the
atom and k = (4n/A) sin O where A is the wave length of the X-rays and 0 is th.e scattering angle. Since
the wave length of the X-rays used for recording the X-ray diffraction pattern is of th_e size of. an atom,
the scattered waves from different regions of an atom interfere constructively. The integral in Eq. 23
takes this interference into account through the factor (sin kr)/kr. Before proceeding further we shall
prove an important result that the scattering factor of an atom in the direction 8 — 0 is equal to the
number of electrons (N,) in the atom, i.e.,
Limit f = N, ' (2
80 )
Here 6 — 0 implies that the X-rays pass straight through the atom. If ® = 0, then k& = 0 and the term
(sin kr)/kr in Eq. 23 is indeterminate. Hence, to evaluate the integrand, we evaluate the limit (sin kr)/kr.

; Y kr—0
We know from the result of the power series that
3 5
6 0
sin 0 ' ﬁ?JrF_"" '
limit —— = limit - : - ;
B-—r:} 0 91—»;1 0 £ [25]
93 04
1- ?I_ F o e ~1 (.26)
Hence, limit (sin kr)/kr = 1 so that
kr—0
o
f =4n Ip(r)rldr = N, ' ' )
0

since the integrand is the product of the electron density and the s
upon integration yields the total number of electrons in the atom,
Let us now return to the electron density p(xyz) which is so defined th

of electrons in the volume element dxdydz. Since the electron density is
expanded by a Fourier series :

pherical volume element 4rrdr, wn‘;ch

at p(xyz)dxdydz is the numd'
a periodic function, it can

=+ 53T 3 F(hkf}exp{mznf(EJ,_@_ i H e
a

+—-
b c

. 3 E
tes of a point in the unit cell ; @ b ¢ :[
kl) are the Fourier coefficients Whi¢

h==w k=-w [=~-w
where V is the volume of the unit cell ; x, y, z are the coordina
the unit cell dimensions ; (hk) are the Miller indices and Fh

e

. ) ' |
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also mhrﬂ;jl.-:ﬁ.ﬂymlfri-:‘-:lcﬁtrUC1llrE factors, Each structure factor is associated with a particular reflection
from t ?'c g tI;lle le‘r; 1ough the triple summation in Eq. 28 is over all the values ( - to + =) of i, k, 1,
in practic 1S heed not be included in the summation although the more the terms included, the

higher lsllh'i]rcmh“mn of p(xyz). The structure factors contain all the information about all the atoms in
q unit cell. The structure factor F(hkD is defined as

Fhkny - ZL exp Zni[g‘f— & hyy _'_*'z_;] ..(29)
J ] b c

where f; is the scattering factor of (he Jth atom in the unit cell and the summation is over all the atoms in

the unit cell. To account for the above expression for F(hkl), we recall that when the Bragg law is
satisfied for a given reflection, the amplitude of the wavelet scattered from an atom in one unit cell of
the crystal 1s in phase with the amplitudes of the scattered wavelets from the corresponding atoms in the
millions of the other unit cells of the crystal. However, the wavelet scatterred by one atom may, in
general. not be in phase with the wavelet scattered by another atom within the same unit cell with the
result that the intensity J(hkl) of reflection will depend upon the extent to which amplitudes of the
wavelets reflected from different atoms (denoted by f)) are in phase with one another. It is known that

I(hkd) ec | Uik |2 -.(30)

i.e., the intensities of the X-ray diffraction patterns from the (siki) planes of the crystal are proportional
to the square of the modulus (absolute value) of F(hkl). I(hkl) can be determined from the densities of
spots on the photographic film. From the values of I(hkl), | F(hki)|? can be determined. But the crystallog-

rapher needs F(hkI) rather than |F(hkl)|? to calculate p(xyz) with the help of Eq. 28. Since F(hkl) is a
complex number, we can write

F(hkly = A(hkl) + iB(hkD) (31)
Hence, | Fhkl) |2 = [A(hKD) + iB(hki] [A(hkl) - iB(hkD)
= [A(hkD))* - [B(hkD))? .(32)

Since the values of A(hkI) and B(hk{) are not obtained directly, indirect methods are employed to determine
these quantities for the evaluation of F(hk!l). For a centrosymmetric crystal, F(hk{) is of the form

F(hki) = 4 ﬂmavy t flight «..{33)

where Jfheavy are the scattering factors of the heavy atoms and Jiigne are the scattering factors of the light
aoms. The fj are much smaller than fieay and their phases are almost random if the atoms are
distributed throughout the unit cell. Thus, the h'.*:avy atoms dominate scattering since their scattering
factors are of the order of their atomic numbers. Since the net result uffl-.gh, changes F(hkl) only slightly,
it follows that F(hkl) will have the same sign as that ualclutntt:d from the location of the heavy atoms. This
phase is then combined with the observed |F[hk£}| obtained from the observed value of I(hkl) o perform
the Fourier synthesis of the entire electron density in the unit cell thereby enabling the location of both
the heavy and the light atoms. This is how the phase problem in crystallography is solved.

Patterson Synthesis. This technique is emplf’i’“d for d?‘efﬂliﬁing relative orientations of pairs of
4oms in a given crystal structure. The technique makes use of the Patterson equation, viz,, -

-
P{r) = a b c

X
4 h=-w k=-w [=-%
The values of |F(hki)| 2 can be obtained wi[houl.amblgt.lit}' from the value of I(hk{). The Patterson
®quation is manifested in the form of a map 'gf vector bifpﬂf’ffﬂiﬂﬂ ?EI‘:VCEII the atoms in the unit cell, Thus,
if (x, , YA, za) and (xp, ¥B» ZB) AT respectively, the Lﬂ(fﬂ!mdwb of atoms A and B in the unit cell, then
ere wo?l’ld gccur 2 pﬂgk at (xa=Xp, YA~YBs za-2p) and also at (Xp=x4, yu-ya, z5-z4) since there is a vector
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; » map 1% Oriion:
from B to A as well as a vector from A to B. The height of lht:_pf:ak in tlh:;nl:‘:}pf ::!;E}z(}]fair n]f :mtr?mﬂ}z
product ZyZp where Z;s are the atomic numbers. Thus, the relative une.n]jle 0N @ sced extensively by the
the original structure can be obtained from the Patterson map. This techn{;% . de-l rmine the Structures of
British crystallographer Dorothy Hodgkin (1910-1994) during 1940-19 hﬂl brize for her work.
important biochemical substances. She was awarded the 1964 Chemistry Noper ¥ _
n the 1950s by the American

- i di
More advanced techniques, known as direct methods, were develope 5 v
crystallographers H. Hauptman and J. Karle for the determination of crystal stru;t;;trsl-t-: E:'u ;-.fa :3::;1[ I?f
these methods is, however, beyond the scope of the present volume. Hauptman an e
1985 Chemistry Nobel Prize for their contributions.

i iz., the primitive
es for the three types of cubic lattices, ViZ.,
I from determine which reflections would be

s in the three types of lattices are :
1/2)

Example 20. Calculate the structure factor F(hkI) val
cubic (P), body centred cubic (1) and face-centred cubie (F) and there
ahsent from the diffraction pattern. The fractional coordinates (x;  z) of the atom

P:(0,0,0):1:(0,0,0) and (1/2, 112, 1/2) and F: (0,0, 0), (172, (1/2, 0), (112, 0, 1/2) and (0, 1/2,
Solution : This example illustrates the use of the structure factors to distinguish between the three types of cubic lattices.

For the primitive cubic (P) lattice,
hx ky iz
; J d /
Fih kD) = z_,- f} cxp[zm(_a_+T+ > H

= ; Ji (since xj, ¥ zj} are zero and e?=1)

Thus, Fhki) has the same value for all &, k and [. Hence there would be reflections in the diffraction pattern for all integral

values of i, k and L

For the body—centred cubic (I) lattice,
Fh,k, D) =fexp[2mi(0 +0 + 0)] + fexp [2ni (B2 + k2 + ]

= f[1+expin(h+k+D)]

L

Recalling that ¢i® = cos @ + i sin @ (Euler's relation) with 8=m, we have
el" =cosn+isinn=-1
Thus, Fh,k, D = f[1 + (- itk

If (h+k+1[) is even, F(h k1) = 2f and if (i+k+10) is odd, F(hkf) = 0. Thus, in the X-ray diffraction pattern, reflections
such as (110), (200), (211), (310), etc., will be present and reflections such as (100), (111), (210), (300), etc., will be absent.
For the face—centred cubic (F) laitice, .
FUWD) = fexp[2ni (0+0+0)] + fexpl2ni (A2+k/2+0)] + fexp [2mi (W2 + O + A/2)] + fexp [2mi(0 + k/2 + I12)]
= f[1 + exp(i = (h+k)) + exp (in (h+]) + exp(in (k+D)
=fI1+ MR I 4 (1R

If h, k, [ are all even or all odd, F(hkl) = 4f and these reflections will be presen i
or the reverse, then these reflections will be absent, 3 t. If one is even and the other two m odd,

ELECTRON DIFFRACTION

The wave-particle duality of matter was proposed by the French physici s L 4
According to de Broglie’s hypothesis, the wave length 2 of electrons engi;[:‘l;tx::i?#lvs;g Iimg'lilse Hilv;?tzb}f
h=hi(m.V), where m, is the mass of the electron. Electrons can be accelerated to Gy I cc?ntrﬂli
energies by applying a known poteritial difference. When accelerated through 10 keV P;f-‘-:ibe Y O
length of 12 pm which makes them suitable for molecular diffraction investi Minm, ;iley [?_cguéiﬁrmim
studies generally utilize elect.mps with energies of the order of 40 keV. Sinc 144 : . Elec Dh o
are scattered strongly by their interaction with electrons and nuclei uf. amm: gfet‘ﬂ;{ﬁg;f: ;?;ﬁca‘ the;
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e used for studying

o h ;
however, upplicﬂllﬂn

id samples. They can. o
ad in thin films. The most impartan P e order.
; r state at low pressures (o

le plus a very great effect on
hs of a second.

he spacing hetween the layers, the

cannot be need for studying the interiors of <ol
molecules in the paceons state held on surfaces a
involvee the ctody of electron diffraction by substances in their vapou
of 10 % 10r1). The ctrong interaction of electrons with molecules of the samp
the photographic plate combine to require a very short exposure of the arder of tent

Wherens the diffraction of X-raye hy a crvstal depends npon { ms in @
diffraction of electrons by gaseons molecules depends upon the distances hetween the nm. s
molecule. Since the gaseous molecules are randomly ariented relative to the electron heam, the d,fl‘r‘-lfl:::
pattern. like that of an X-ray powder photograph, consists af concentric rings. There is an appreciabic
amount of hackground scatter of the electron beam with the result that diffeaction bands are only poorly
resolved. New experimental technigues have, however, greatly improved the resolution of the hands.

It is possible to calculate the electron scattering from a pair of nucle separated by a distance Ry
and oriented at a definite angle 1o the incident beam. The overall diffraction pattern is then calculated
by allowing for all possible orientations of this pair of atoms. This procedure amounts to integration
over all possible orientations. The final expression obtained for the diffraction intensity is

140) = 2fif; (1 + sin s Ryj)/s Ry)

where s = - (4%/2) sin (0/2), & is the wave length of electron beam and is the scattering angle. The
quantitics f; and f; are the scattering factors of the ith and jth atoms. They determine the scattering
power of the atoms. If a molecule consists of a number of atoms, the total intensity is given by the

Wierl equation, viz.,

w4(33)

sins R,
I(s) = Z.ﬁ.ﬁ —E""‘ - (36)
i.J s &:-[

where the summation is over all the atoms i and j of the molecule. The electron diffraction pattern can
he interpreted in terms of the distances between all possible pairs of atoms in the molecule (not simply
those bonded 1ogether). The Wierl equation does not, unfortunately, allow the direct calculation of the
internuclear distances Ry from the measurements of I(s) at various values of 5.

The clectron diffraction studies are useful for evaluating the bond lengths and bond angles in
relatively simple paseous molecules. As the number of atoms in the molecules increases, one 0on
reaches the situation where the number of pieces of information available (viz., the spacings of the
resolved diffraction rings) is not great enough 1o evaluate all of the necessary structural parameters,
The number of electron diffraction rings observed is usually much less than the number of X-ray
diffraction spots observed in the X-ray crystal swdy This shows that difticulties lie in the path of
structure determination by electron diffraction. In spite of these difficultics, however, many molecular
structures have been determined by this method. The accuracy of bond length and bond angles obwined
from electron diffraction studies is comparable W that obained from X-ray dilfraction swudies for

simple molecules.
NEUTRON DIFFRACTION

As dissussed above, diffraction patterns can be obliined by means of electron beams when they are
scatiered by molecules. Bevause of ther nc_gamc charge and hence low penctrating power, the electron
beams are gencrally used for the wvestigation of surfaces and thin films. Neutrons, on the other hand
have a high penctrating power and are partcularly usetul tor strucwral swdies of solids, Ncul‘.rur:l
diffraction by crysials was demomstrated as carly as in 1936 but the method did not become important
until the advent of nuclear piles. Fast neutons produced g nuledr pile are slowed down by collisions
with & moderator (D;0 or graphite) 1 produce thermal seutrons, Le., neutrons for which the range of
kinetic energies is determined by the temperature of the surroundings,

. )
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