

NMR SPECTROSCOPY: A BRIEF INTRODUCTION

Dr. Darshana Mehta School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain – 456 010, Madhya Pradesh, India

Nucleus	Gyromagnetic ratio, rad s ⁻¹ T ⁻¹ , x 10 ⁻⁷	NMR Fre- quency (MHZ) at 11.75 T	Natural Abun- dance, %	Relative Sensitiv- ity (constant num- ber of nuclei)	Shift pa- rameter range, ppm
³ H	28.535	533.	0	1.2	13
¹ H	26.7519	500.	99.98	1.0	13
¹⁹ F	25.181	470.4	100.	0.83	400
³¹ P	10.841	200.2	100	0.066	530
¹³ C	6.7283	125.7	1.108	0.0159	250
^{15}N	-2.712	50.7	0.37	0.00134	1700

- ✤ Fluorine-19 nuclear magnetic resonance is an analytical technique used to identify fluorinecontaining compounds. ¹⁹F is one of the most important nuclei for NMR spectroscopy
- ¹⁹F has a nuclear spin of 1/2 and a high magnetogyric ratio, which means that this isotope is highly responsive to NMR measurements.
- ✤ Furthermore, ¹⁹F comprises 100% of naturally-occurring fluorine.
- Secause of its favorable nuclear properties and high abundance, ¹⁹F NMR measurements are very fast, comparable with ¹H NMR spectroscopy.
- ✤ ¹⁹F is an important nucleus for NMR spectroscopy because of its receptivity and large chemical shift dispersion, which is greater than that for proton NMR spectroscopy
- * The reference compound for ${}^{19}F$ is $CFCI_3$.
- * ¹⁹F NMR chemical shifts are more difficult to predict than ¹H NMR shifts. Specifically, ¹⁹F NMR shifts are strongly affected by contributions from electronic excited states whereas ¹H NMR shifts are dominated by diamagnetic contributions.

- ★ ¹⁹F has a nuclear spin of ½, a high magnetogyric ratio, is 100% naturally abundant in fluorine and hence it is very similar to ¹H NMR and very compatible for NMR analysis.
- ✤ It also has a very large chemical shift range.
- ✤ ¹⁹F NMR is interesting for two main reasons, one is the significance of fluorine containing compounds and another is the compatibility of the ¹⁹F nucleus for NMR.
- ✤ Fluorine is a constituent in many organic compounds and can give organic compounds special properties. Hence scientists who need to analyze organic compounds containing fluorine would find ¹⁹F NMR useful.
- ✤ For ¹⁹F NMR, the frequency of the radiation is adjusted to the small range in which ¹⁹F nuclei absorb the energy and undergo nuclear spin transitions.

Differences between ¹H and ¹⁹F NMR

- > Unlike ¹H spectra which is referenced to tetramethylsilane [Si(CH₃)₄], the prevalent and established internal reference for fluorine NMR is fluorotrichloromethane (CFCI₃), which is given a chemical shift of zero.
- > Like ¹H-NMR, negative chemical shifts correlate to upfield shifts of the reference.

Some other references

 CF_3CO_2H (δ -76.2ppm); hexafluorobenzene (δ -162.2ppm) trifluoromethylbenzene (δ -63.2ppm); ethyl trifluoroacetate (δ -75.8 ppm).

Nonetheless, fluorotrichloromethane is superior as it will not influence the sample's chemical shifts. Also, it's detected signal is usually far downfield from that of most fluorine atoms in organofluorine compunds, hence most of the chemical shifts in ¹⁹F spectra are negative. ¹⁹F has a very large chemical shift range of around δ 500 ppm as compared to that of ¹H of around 1-10 ppm, causing interferences and overlapping of signals to be less likely in ¹⁹F NMR.

For ¹H NMR, most solvents contain hydrogen, hence special solvents are required for ¹H NMR. Unlike ¹H NMR, deuterated solvents are not required for ¹⁹F NMR, since most solvents do not contain fluorine and hence does not affect the ¹⁹F NMR signal. Hence ¹⁹F is very compatible for NMR analysis of compounds containing fluorine. For anticipating the chemical shifts due to shielding effects for fluorine substituents, the usual logic that applies to ¹H NMR spectra does not work for ¹⁹F NMR spectra. The three most frequently used solvents in F-19 NMR are CDCl₃, DMSO-d₆ and acetone-d₆. The deviation in chemical shift between these solvents when they are used is generally 1 ppm or less.

This is explained below.

The resonance frequency of nuclei detected by NMR depends on the magnetic environment of the nuclei. The effective magnetic field strength (B_{eff}) on a nucleus is affected by the applied magnetic field (B_0) and shielding constant (σ) as seen in <u>Equation</u>.

$$\mathbf{B}_{\rm eff} = \mathbf{B}_0 - \boldsymbol{\sigma}. \mathbf{B}_0$$

The shielding constant is affected by Equation, where the σ_{dia} term is the diamagnetic term, which represents the opposing magnetic field that comes from the effect of the applied magnetic field on the electrons directly surrounding the nucleus (s-orbitals). The shielding effect provided by the sorbital electrons. While the paramagnetic term, σ_{para} , comes from p-orbital electrons when they are affected by the applied magnetic field. The shielding effect provided by the p-orbital electrons. The paramagnetic term, σ_{para} , affects the shielding effect in the fluorine nucleus more significantly, while, only the σ_{dia} term is required for ¹H NMR as hydrogen does not have p-orbital electrons.

 $\sigma = \sigma_{\rm dia} + \sigma_{\rm para} + \sigma_{\rm i}$

Overview of ¹⁹F NMR spectra chemical shift ranges

Chemical group	σ relative to CFCl ₃ , ppm	σ relative to CF₃COOH, ppm	o relative to C ₆ H₅F, ppm
¢F H	-210	-131	-96
	-140	-69	-26
₽ \$_₽	-140	-60	-26
cF2-C	-125	-46	-11
сғ _з -с н	-75	4	39
O CF3−C—	-81	-2	33
—SO ₂ F	50	129	164

Overview of ¹⁹F NMR spectra chemical shift ranges

Similar to ¹H NMR, fluorine chemical shifts are dependent on their local chemical environments. The table below shows the chemical shifts ranges for the fluorine atoms of some F, CF_2 and CF_3 branches and some representative chemical shifts for F-19 NMR referenced to $CFCI_3$.

Overview of ¹⁹F NMR spectra chemical shift ranges

Compound	δ (ppm)	Compound	δ (ppm)	Compound	δ (ppm)
MeF	-271.9	FCH=CH ₂	-114	CFBr ₃	7.4
EtF	-213	$F_2C=CH_2$	-81.3	CF ₂ Br ₂	7
CF_2H_2	-1436	$F_2C=CF_2$	-135	CFH ₂ Ph	-207
CF ₃ R	-60 to -70	C ₆ F ₆	-163	CF_2CI_2	-8
AsF_5	-66	[BeF₄]⁻	-163	[AsF ₆]⁻	-69.5
BF ₃	-131	CIF ₅	247, 412	CIF ₃	116, -4
IF ₇	170	ReF ₇	345	MoF_{6}	-278
SeF ₆	55	Sb ₅	-108	[SbF ₆]⁻	-109
[SiF ₆] ²⁻	-127	WF ₆	166	TeF ₆	-57
XeF ₂	258	XeF ₆	550	XeF ₄	438

- ¹⁹F-¹⁹F coupling constants are generally larger than ¹H-¹H coupling constants.
- Long range ¹⁹F-¹⁹F coupling, (²J, ³J, ⁴J or even ⁵J) are commonly observed. Generally, the longer range the coupling, the smaller the value.
- Hydrogen couples with fluorine, which is very typical to see in ¹⁹F spectrum. With a geminal hydrogen, the coupling constants can be as large as 50 Hz.
- Other nuclei can couple with fluorine, however, this can be prevented by running decoupled experiments. It is common to run fluorine NMRs with both carbon and proton decoupled.
- Fluorine atoms can also couple with each other. Between fluorine atoms, homonuclear coupling constants are much larger than with hydrogen atoms. Geminal fluorines usually have a J-value of 250-300 Hz.

ppm

In this figure, we see the reciprocal effect of the protons on the fluorine atom.

In this proton decoupled spectra, we see only a singlet for the fluorine atom.

In the proton coupled spectrum, however we see that the fluorine is coupled to two sets of hydrogens, producing triplet with a large coupling constant.

The triplet is further split in to three quartets by a four bond coupling with the methyl group.

This is a example of aromatic fluorine containing compound of pfluoroacetophenone. In proton decoupled spectra we find a singlet for the fluorine atom while in proton coupled spectrum we find a complex multiplet. The fluorine atom coupled differently to the ortho and meta protons in this para substituted compound.

Drug analysis

There is an increasing demand for techniques to analyze and conduct quality control for pharmaceuticals containing fluorine. Drugs that contain fluorine in their structure make up around one-third of top-selling drugs in the market.

However, ¹⁹F NMR is very sensitive to it's local chemical environment and hence the structure of the molecule; it also gives an exceptional amount of analytical information as it has large chemical shift ranges. Hence, drugs can be analyzed quantitatively by ¹⁹F NMR if fluorinated compounds are in sufficient concentrations and by using an appropriate time scale.

Monitoring reactions

¹⁹F NMR can be used as a diagnostic tool for the monitoring of reactions when fluorine substituents are involved. This is because the ¹⁹F NMR spectra of most reactants and products are different. For example, the polymerization of PFCP aryl amine polymers from perfluorocyclopentene monomers with biphenols can be monitored, as the monomers have a different ¹⁹F NMR spectra from the polymer.

- Phosphorus-31 nuclear magnetic resonance (³¹P NMR) is conceptually the same as proton (¹H) NMR.
- The ³¹P nucleus is useful in NMR spectroscopy due to its relatively high gyromagnetic ratio (17.235 MHzT⁻¹).
- For comparison, the gyromagnetic ratios of ¹H and ¹³C are (42.576 MHz T⁻¹) and (10.705 MHz T⁻¹), respectively.
- > Furthermore, ³¹P has a 100% natural isotopic abundance.
- Like the ¹H nucleus, the ³¹P nucleus has a nuclear spin of ¹/₂ which makes spectra relatively easy to interpret.
- ³¹P NMR is an excellent technique for studying phosphorus containing compounds, such as organic compounds and metal coordination complexes.

- > While ¹H NMR spectra is referenced to tetramethylsilane [Si(CH₃)₄], the chemical shifts in ³¹P NMR are typically reported relative to 85% phosphoric acid ($\delta = 0$ ppm), which is used as an external standard due to its reactivity. However, trimethyl phosphite, P(OCH₃)₃, is also used since unlike phosphoric acid its shift ($\delta = 140$ ppm) is not dependent on concentration or pH.
- As in ¹H NMR, positive chemical shifts correspond to a downfield shift from the standard. Chemical shifts in ³¹P NMR commonly depend on the concentration of the sample, the solvent used, and the presence of other compounds. This is because the external standard does not take into account the bulk properties of the sample. As a result, reported chemical shifts for the same compound could vary by 1 ppm or more, especially for phosphate groups (P=O).
- ³¹P NMR spectra are often recorded with all proton signals decoupled, i.e., ³¹P-{¹H}, as is done with ¹³C NMR. This gives rise to single, sharp signals per unique ³¹P nucleus.
- > Herein, we will consider both coupled and decoupled spectra.

Interpreting spectra

As in 1H NMR, phosphorus signals occur at different frequencies depending on the electron environment of each phosphorus nucleus. In this section we will study a few examples of phosphorus compounds with varying chemical shifts and coupling to other nuclei.

- The range of ³¹P chemical shifts in diamagnetic compounds covers some 2000 ppm, and is thus one order of magnitude larger than that of carbon, and two orders of magnitude larger than proton.
- > The upfield end in ³¹P –NMR is due to white phosphorus P4 at δP = –527 to –488 ppm, depending on solvent and water content of the sample.
- Chemical shift values of Phosphorus resonance also dependence upon the bond angle, electronegativity of the substituent's and the p-bonding character of the substituent's.
- From 13C-NMR, we know that an olefin resonates downfield from an alkane, and an acetylene is found in between, but closer to the alkane. This is explained by diamagnetic anisotropy and the behavior of P-C, P=C, and P=C bonds also same

Coupling constant

Proton-Phosphorus					
о Рн	630-707				
$(CH_3)_3P$ $(CH_3)_3P=O$ $(CH_3CH_2)_3P$ $(CH_3CH_2)_3P=O$ O O $CH_3P(OR)_5$	2.7 13.4 0.5 (HCCP) 11.9 (HCCP) 10-13	13.7 (HCP) 16.3 (HCP)			
$CH_{3}CP(OR)_{2} \\ CH_{3}CP(OR)_{2} \\ CH_{3}OP(OR)_{2} \\ P[N(CH_{3})_{2}]_{3} \\ O = P[N(CH_{3})_{2}]_{3}$	15-20 10.5-12 8.8 9.5				

Coupling to fluorine

➢ ¹⁹F NMR is very similar to ³¹P NMR in that ¹⁹F has spin 1/2 and is a 100% abundant isotope. As a result, ¹⁹F NMR is a great technique for fluorinecontaining compounds and allows observance of P-F coupling. The coupled ³¹P and ¹⁹F NMR spectra of ethoxybis(trifluoromethyl)phosphine, P(CF₃)₂(OCH₂CH₃), are shown in Figure. It is worth noting the splitting due to JPCF = 86.6 Hz.

Structure, ${}^{31}P-{}^{1}H$ spectrum (A), and ${}^{19}F-{}^{1}H$ spectrum (B) for P(CF₃)₂(OCH₂CH₃).

(a) The proton decoupled 31P NMR of diethyl spectrum chlorophosphite reveals that the methyl groups are actually a triplet of doublets with the four bond ³¹P-1H coupling constant of 1 Hz. (b) ¹³C and DEPT spectra (c) The proton coupled 31P NMR of diethyl spectrum chlorophosphite spectrum shows an apparent quintet, means that there is no appreciable coupling of the phosphorous atom to the methyl protons of the methyl groups.

31P-1H coupling

Consider the structure of dimethyl phosphonate, OPH(OCH₃)₂, shown in Figure. As the phosphorus nucleus is coupled to a hydrogen nucleus bound directly to it, that is, a coupling separated by a single bond, we expect JPH to be very high. Indeed, the separation is so large (715 Hz) that one could easily mistake the split peak for two peaks corresponding to two different phosphorus nuclei.

Structure and ³¹P NMR spectrum of OPH(OCH₃)₂ with only the OCH₃ protons decoupled.

 \succ This strong coupling could also lead us astray when we consider the ¹H NMR spectrum of dimethyl phosphonate (Figure). Here we observe two very small peaks corresponding to the phosphine proton. The peaks are separated by such a large distance and are so small relative to the methoxy doublet (ratio of 1:1:12), that it would be easy to confuse them for an impurity. To assign the small doublet, we could decouple the phosphorus signal at 11 ppm, which will cause this peak to collapse into a singlet.

¹H spectrum of $OPH(OCH_3)_2$.

- ³¹P NMR spectroscopy is a simple technique that can be used alongside ¹H NMR to characterize phosphorus-containing compounds. When used on its own, the biggest difference from ¹H NMR is that there is no need to utilize deuterated solvents. This advantage leads to many different applications of ³¹P NMR, such as assaying purity and monitoring reactions.
- Phosporus-31 nuclear magnetic resonance is an analytical technique used to identify phosphorus-containing compounds, such as organic compounds and metal complexes.