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Convex Functions

Definition. A function ¢ defined an open interval (a, b) is said to be convex if for each x, y £ (a, b) and %, p such
thath, 120 and & + = 1, we have
POX + py) < Ad(x) + pd(y)
The end points g, b can take the values —=, o= respectively.
If we take L = 1-A, L 20, then & + p = 1 and so ¢ will be convex if

(5.1.1) GOx + (1=1)y) < Ld(x) + (1-R)d(y)
Ifwetakea<s<t<u<b and
t—s u-—t
A= —— , l= —— , u=x, §=Vy,
u-=s u-—=»s -I
then
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t—Ss+u—t u-s
A= = =]
u-—s u-—=s

and so (5.1.1) reduces to

¢[""u+“" ] > d(u )+—¢(e)
u-—=s u-—=s u-—=s

ar

(5.1.2) s —
u-—s

Thus the segment joining (s, ¢(s)) and (u, nb(n)) is never below the graph of ¢.
A function ¢ is sometimes said to be convex on (a,b) it for all x, y & (a, b),

Xx+y) 1 I
f[ 5 Jﬂaf{x)‘f‘if()()

(Clearly this definition is consequence of major definition taking .. = p = —).

If for all positive numbers A, Jt satisfying A +1 = 1, we have

OOAX + 1y) < hd(x) + pd(y),
then ¢ is said to be Strictly Convex.

Theorem 5. Let ¢ be convex on (a,b) and a <s <t<u<b, then
O(1) —4(s) _ (W) —4(s) _ (u—(t)

t—s u-—s u—t
If § is strictly convex, equality will not occur.

Proof. Leta <s<t<u<band suppose ¢ is convex on (a,b). Since
t—-s u—-t t—-s4+u—-t u-s
+ = =

= =1,
u—-s u-s u-—s u-—s
therefore, convexity of ¢ yields

¢["Su+““ ]s S hu) + —¢(s)

u-—s u—s u-—=s
or
t—s —t
(5.1.3) d(t) < —qtb(U) + u—¢(5)
u-—s u-—s
ar
(u—s) $(1) < (t—s) d(u) + (u—-1) (s)
or
(u=s) ($(t) — $(s)) < (t=5) d(u) + ud(s) — td(s) — ud(s) + s ¢(s)
ar
(u=s)(G(t) — ¢(s)) < (t=s) (d(u)—(s))
ar
10 G =) _ §(u)=4(s)

t-s  u-s
This proves the first inequality. The second inequality can be proved similarly.
If ¢ is strictly converse, equality shall not be there in (5.1.3) and so it cannot be in (5.1.4). This completes the pro
of the theorem.

Theorem 6. A differentiable function ¢ is convex on (a,b) if and only if ¢’ is a monotonically increasing function.
0" exists on (a,b), then ¢ is convex if and only if ¢"" 2 0 on (a, b) and strictly convex if y” >0 on (a,b).
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Proof. Suppose first that ¢ is differentiable and convex and leta<s <t<u < v <b. Then applying Theorem 5 to a <

s<t<u, we get
OO —d(s) _ HW) —(s) _ dw)— (1)
t-s  u-s  u-—t
and applying Theorem S5toa<t<u<v, we get

¢ =) _ 9 —9(t) _ $(v) — (V)

u—t v—t v—u
Hence
$O—9(s) _ d(v)—d(u)
t-s  v-—u
Ift — s, M decreases to ¢'(s) and if u— v, M increases to ¢'(v). Hence ¢'(v)=¢'(s) forall s <

t—s v—1u
v and so ¢’ is monotonically increasing function.
Further, if ¢’ exists, it can never be negative due to monotonicity of ¢'.
Conversely, let '’ 2 0. Our aim is to show that \y is convex. Suppose, on the contrary, that ¢ is not convex on (a, b).
Therefore, there are points a < s <t < u < b such that

o) —4(s) _ p(u) —¢(t)
t—s u-—t

that is, slope of chord over (s.) is larger than the slope of the chord over (t,u). But slope of the chord over (s,1) is
equal to ¢’'(a), for some a € (s, 1) and slope of the chord over (t,u) is ¢'(B), B £ (L,u). But §'(a) > ¢'(P) implies ¢’ is not
monotone increasing and so y/’ cannot be greater than zero. We thus arrive at a contradiction. Hence ¢ is convex.

If ¢"” > 0, then ¢ is strictly convex, for otherwise there would exist collinear points of the graph of ¢ and we would
have ¢'(o) = ¢'(P}) for appropriate o and } with @ <3 . But then ¢"' = 0 at some point between ¢ and [} which is a
contradiction to ¢" > 0. This completes the proof.

Theorem 7. If ¢ is convex on (a,b), then ¢ is absolutely continuous on each closed subinterval of (a.b).

Proof. Let [c,d] c(ab). Ifx, y& [c, d], then we have a<c <x<y<d<bandso by Theorem 5, we have

O =0 _$(y)=9(x) _ ()=o)

c—a y—X b-d

Thus
[bCy) = ¢(x)<Mix-y| , x,y¢ [c,d]

and so ¢ is absolutely continuous there.

Theorem 8. Every convex function on an open interval is continuous.

Proof. If a <x; <X <X, <b, the convexity of a function ¢ implies

Xy —X X—X
(5.1.5) 0 < ——— (X)) + ——¢(x2)
Xz - Xl x: = xl
If we make x — x, in (5.1.5), we obtain ¢(x,+ 0) £ ¢(x,); and if we take x, — x we obtain d(x) < d(x + 0).

Hence ¢(x) = ¢(x+0) for all values of x in (a,b). Similarly ¢(x—0) = ¢(x) for all values of x. Hence
¢ (x—0) = ¢p(x+0) = ¢(x)

and so ¢ is continuous.

Definition. Let ¢ be a convex function on (a,b) and xy € (a,b). The line

(5.1.6) y = m(x—Xg) + ¢(Xq)
through (xg, ¢p(x)) is called a Supporting Line at x, if it always lie below the graph of ¢, that is, if

(5.1.7)  ¢(x) 2 m(x=x%g) + $ (o)
The line (5.1.6) is a supporting line if and only if its slope m lies between the left and right hand derivatives at xq.
Thus, in particular, there is at least one supporting line at each point.

Theorem 9 (Jensen Inequality). Let ¢ be a convex function on (-0, o) and let f be an integrable function on [0,1].

Then 3
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[df)de = ¢lfdy
Proof. Put

1
a= [f(tdt
0
Let y = m(x—t) + ¢(ct) be the equation of supporting line at . Then (by (....) above),

(1) = m(f()—o) + ()

Integrating both sides with respect to t over [0, 1], we have

1 |
o ()dt = m[[ f(t)dt — [F(t)dt]+ [d(a)dt
0 0
l
=0+ ¢(cr) _[dt
0

|
= d() = [ [F(t)dL].
0
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