M.Sc. II Sem. (Mathematics)
Poper - Lebesgue Measure & Integration
Topic - Convex Functions & Jenson Inequality
Faculty - Dr. Pradeep Pormal

Convex Functions

Definition. A function ϕ defined an open interval (a, b) is said to be **convex** if for each x, y ϵ (a, b) and λ , μ such that λ , $\mu \ge 0$ and $\lambda + \mu = 1$, we have

$$\phi(\lambda x + \mu y) \le \lambda \phi(x) + \mu \phi(y)$$

The end points a, b can take the values $-\infty$, ∞ respectively.

If we take $\mu=1-\lambda$, $\lambda\geq 0$, then $\lambda+\mu=1$ and so ϕ will be convex if (5.1.1) $\phi(\lambda x+(1-\lambda)y)\leq \lambda\phi(x)+(1-\lambda)\phi(y)$

If we take a < s < t < u < b and

$$\lambda = \frac{t-s}{u-s}$$
 , $\mu = \frac{u-t}{u-s}$, $u = x$, $s = y$,

then

$$\lambda + \mu = \frac{t - s + u - t}{u - s} = \frac{u - s}{u - s} = 1$$

and so (5.1.1) reduces to

$$\phi\left(\frac{t-s}{u-s}u + \frac{u-t}{u-s}s\right) \le \frac{t-s}{u-s}\phi(u) + \frac{u-t}{u-s}\phi(s)$$

or

$$\phi(t) \le \frac{t-s}{u-s}\phi(u) + \frac{u-t}{u-s}\phi(u)$$

Thus the segment joining $(s, \phi(s))$ and $(u, \phi(n))$ is never below the graph of ϕ . A function ϕ is sometimes said to be convex on (a,b) it for all $x, y \in (a, b)$,

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

(Clearly this definition is consequence of major definition taking $\lambda = \mu = \frac{1}{2}$).

If for all positive numbers λ , μ satisfying $\lambda + \mu = 1$, we have

$$\phi(\lambda x + \mu y) < \lambda \phi(x) + \mu \phi(y)$$

then ϕ is said to be Strictly Convex.

Theorem 5. Let ϕ be convex on (a,b) and a < s < t < u < b, then

$$\frac{\varphi(t) - \varphi(s)}{t - s} \le \frac{\varphi(u) - \varphi(s)}{u - s} \le \frac{\varphi(u - \varphi(t))}{u - t}$$

If ϕ is strictly convex, equality will not occur.

Proof. Let a < s < t < u < b and suppose ϕ is convex on (a,b). Since

$$\frac{t-s}{u-s} + \frac{u-t}{u-s} = \frac{t-s+u-t}{u-s} = \frac{u-s}{u-s} = 1$$
,

therefore, convexity of ϕ yields

$$\phi\left(\frac{t-s}{u-s}u+\frac{u-t}{u-s}s\right) \leq \frac{t-s}{u-s}\phi(u)+\frac{u-t}{u-s}\phi(s)$$

or

$$\phi(t) \le \frac{t-s}{u-s}\phi(u) + \frac{u-t}{u-s}\phi(s)$$

or

$$(u-s) \phi(t) \leq (t-s) \phi(u) + (u-t) \phi(s)$$

or

$$(u-s) (\phi(t) - \phi(s)) \le (t-s) \phi(u) + u\phi(s) - t\phi(s) - u\phi(s) + s\phi(s)$$

or

$$(u-s)(\phi(t) - \phi(s)) \le (t-s)(\phi(u)-\phi(s))$$

or

(5.1.4)
$$\frac{\phi(t) - \phi(s)}{t - s} \le \frac{\phi(u) - \phi(s)}{u - s}$$

This proves the first inequality. The second inequality can be proved similarly.

If ϕ is strictly converse, equality shall not be there in (5.1.3) and so it cannot be in (5.1.4). This completes the proof the theorem.

Theorem 6. A differentiable function ϕ is convex on (a,b) if and only if ϕ' is a monotonically increasing function. ϕ'' exists on (a,b), then ϕ is convex if and only if $\phi'' \ge 0$ on (a, b) and strictly convex if $\psi'' > 0$ on (a,b).

2

Proof. Suppose first that ϕ is differentiable and convex and let a < s < t < u < v < b. Then applying Theorem 5 to a < t < u < v < b. s < t < u, we get

$$\frac{\phi(t) - \phi(s)}{t - s} \le \frac{\phi(u) - \phi(s)}{u - s} \le \frac{\phi(u) - \phi(t)}{u - t}$$

and applying Theorem 5 to a < t < u < v, we get

$$\frac{\phi(u) - \phi(t)}{u - t} \le \frac{\phi(v) - \phi(t)}{v - t} \le \frac{\phi(v) - \phi(v)}{v - u}$$

Hence

$$\frac{\phi(t) - \phi(s)}{t - s} \le \frac{\phi(v) - \phi(u)}{v - u}$$

If
$$t \to s$$
, $\frac{\varphi(t) - \varphi(s)}{t - s}$ decreases to $\varphi'(s)$ and if $u \to v$, $\frac{\varphi(v) - \varphi(u)}{v - u}$ increases to $\varphi'(v)$. Hence $\varphi'(v) \ge \varphi'(s)$ for all $s < v - u$

v and so ϕ' is monotonically increasing function.

Further, if ϕ'' exists, it can never be negative due to monotonicity of ϕ' .

Conversely, let $\psi'' \ge 0$. Our aim is to show that ψ is convex. Suppose, on the contrary, that ϕ is not convex on (a, b). Therefore, there are points a < s < t < u < b such that

$$\frac{\phi(t) - \phi(s)}{t - s} > \frac{\phi(u) - \phi(t)}{u - t}$$

that is, slope of chord over (s,t) is larger than the slope of the chord over (t,u). But slope of the chord over (s,t) is equal to $\phi'(\alpha)$, for some $\alpha \in (s, t)$ and slope of the chord over (t, u) is $\phi'(\beta)$, $\beta \in (t, u)$. But $\phi'(\alpha) > \phi'(\beta)$ implies ϕ' is not monotone increasing and so ψ'' cannot be greater than zero. We thus arrive at a contradiction. Hence ϕ is convex.

If $\phi'' > 0$, then ϕ is strictly convex, for otherwise there would exist collinear points of the graph of ϕ and we would have $\phi'(\alpha) = \phi'(\beta)$ for appropriate α and β with $\alpha < \beta$. But then $\phi'' = 0$ at some point between α and β which is a contradiction to $\phi'' > 0$. This completes the proof.

Theorem 7. If ϕ is convex on (a,b), then ϕ is absolutely continuous on each closed subinterval of (a,b).

Proof. Let $[c,d] \subset (a,b)$. If x, y ε [c,d], then we have $a < c \le x \le y \le d < b$ and so by Theorem 5, we have

$$\frac{\phi(c) - \phi(a)}{c - a} \le \frac{\phi(y) - \phi(x)}{y - x} \le \frac{\phi(b) - \phi(d)}{b - d}$$

Thus

$$|\varphi(y)-\varphi(x)|\leq M|x-y|\ \ ,\ \ x,\ y\ \epsilon\ [c,\ d]$$
 and so φ is absolutely continuous there.

Theorem 8. Every convex function on an open interval is continuous.

If $a < x_1 < x < x_2 < b$, the convexity of a function ϕ implies

(5.1.5)
$$\phi(x) \le \frac{x_2 - x}{x_2 - x_1} \phi(x_1) + \frac{x - x_1}{x_2 - x_1} \phi(x_2)$$

If we make $x \to x_1$ in (5.1.5), we obtain $\phi(x_1 + 0) \le \phi(x_1)$; and if we take $x_2 \to x$ we obtain $\phi(x) \le \phi(x+0).$

Hence $\phi(x) = \phi(x+0)$ for all values of x in (a,b). Similarly $\phi(x-0) = \phi(x)$ for all values of x. Hence

$$\phi(x-0) = \phi(x+0) = \phi(x)$$

and so b is continuous.

Definition. Let ϕ be a convex function on (a,b) and $x_0 \in (a,b)$. The line

$$(5.1.6) y = m(x-x_0) + \phi(x_0)$$

through $(x_0, \phi(x_0))$ is called a **Supporting Line** at x_0 if it always lie below the graph of ϕ , that is, if

$$(5.1.7)$$
 $\phi(x) \ge m(x-x_0) + \phi(x_0)$

The line (5.1.6) is a supporting line if and only if its slope m lies between the left and right hand derivatives at x_0 . Thus, in particular, there is at least one supporting line at each point.

Theorem 9 (Jensen Inequality). Let ϕ be a convex function on $(-\infty, \infty)$ and let f be an integrable function on [0,1]. Then 3

$$\int \phi(f(t))dt \ge \phi[\int f(t)dt]$$

Proof. Put

$$\alpha = \int_{0}^{1} f(t)dt$$

Let $y = m(x-\alpha) + \phi(\alpha)$ be the equation of supporting line at α . Then (by (....) above), $\phi(f(t)) \ge m(f(t)-\alpha) + \phi(\alpha)$

Integrating both sides with respect to t over [0, 1], we have

$$\int_{0}^{1} \phi(f(t))dt \ge m[\int f(t)dt - \int f(t)dt] + \int_{0}^{1} \phi(\alpha)dt$$

$$= 0 + \phi(\alpha) \int_{0}^{1} dt$$

$$= \phi(\alpha) = \phi[\int_{0}^{1} f(t)dt].$$