Dr. Apurva Muley (Guest Lecturer)
School of Studies in Physics, Vikram University, Ujjain
Lecture for M. Sc. Physics IV Semester students
Paper-1V: Microprocessor

Unit-3 SAP-I

\

L

A4

10-5 EXECUTION CYCLE

The next three states (T,, Ts. and T,) are the execution
evele of SAP-1. The register transfers during the execution
c:vclc depend on the particular instruction being executed.
For instance. LDA 9H requires different register transfers
than ADD BH. What follows are the control routines lor
different SAP-1 instructions.

LDA Routine

For a concrete discussion. let’s assume that the instruction
register has been loaded with LDA 9H:

IR = 0000 1001
During the T, state, the instruction field 0000 goes to the

controller-sequencer, where it is decoded; the address field
1001 is loaded into the MAR. Figure 10-4a shows the

Scanned with CamScanner

active parts of SAP-1 during the 7, state. Note that E, and
L,, are active; all other control bits are inactive.

During the T state, CE and L, go low. This means that
the addressed data word in the RAM will be loaded into
the accumulator on the next positive clock edge (see Fig.
10-4b).

T, 1s a no-operation state. During this third execution
state, all registers are inactive (Fig. 10-4¢). This means
that the controller-sequencer is sending out a word whose
bits are all inactive. Nop (pronounced no op) stands for
“‘no operation.”” The T state of the LDA routine is a nop.

Figure 10-5 shows the timing diagram for the fetch and
LDA routines. During the T, state, £, and L,, are active;
the positive clock edge midway through this state will
transfer the address in the program counter to the MAR.
During the T, state, Cp is active and the program counter
1s incremented on the positive clock edge. During the T,
state, CE and L, are active; when the positive clock edge
occurs, the addressed RAM word is transferred to the
instruction register. The LDA execution starts with the T,
state, where Ly, and £, are active; on the positive clock
edge the address field in the instruction register is transferred
to the MAR. During the T state, CE and L, are active;
this means that the addressed RAM data word 1s transferred
to the accumulator on the positive clock edge. As you
know, the T, state of the LDA routine 1s a nop.

ADD Routine

Suppose at the end of the fetch cycle the instruction register
I
contains ADD BH:

IR = 0001 1011

During the T state the instruction field goes to the controller-
sequencer and the address field to the MAR (see Fig.

10-6a). During this state F, and L,, are active.
Control bits CE and Ly are active during the Ty state.
This allows the addressed RAM word to set up the B

Scanned with CamScanner

o
I - \&E\-\.n » A A
Yol | i3}
R | K= : T
T nar MAR K= Adaisut
i 02 L
A=l = os — | ram = RERY- Sl
RAMS =1 =1 =8 CE-] S
| m Ig =3. 08 IR g A0 AL 07
f T T 2 1 12
CON D - CON SR CoN:|] D’
T) T) T
CON CON CON
(a/ (b) (c)
Fig. 104 LDA routine: (a) T, state: (b) T state: (¢) T, state.
— T‘I ——- T2 ——— T3 ot 7'4 - 75-—‘4— TG-...
CLK
| | | | |
—
| |
Ep | I | I |
i I I I |
{ I [I |
1
Ly | : : | :
! I | |
| I | i
i I |
“] B | |
I I I
I [|
- ! I | -
CE | | |
| I |
: I [
L | |
' ' I |
I I
| l
£ I |
! | |
|
' [—
3 }
Fig. 10-5 Fetch and LDA timing diagram.
[] —a - .
R — A PC T A — A [
1 — PC — °
£ U U ‘1."
Mol mar K= =] Add/sub MAR K= K= Add/sub MAR] Add b |
4 1t i 1t ! . =
——— ’-L)
RAM =Y F—=| B o B == = " 8 aan =y = &
K= ==
IR % I s
£x — —{ O g 0 LA 0
{ 02 U {I] !
CON D CON D
i | CON i 0
i T
CON CON CON
fa)) fel

Fig. 10-6 ADD and SUB routincs: (a) T, state; (b) T state: (¢)

T, state.

Scanned with CamScanner

register (Fig. 10-6b). As usuaI: loading takes place midway
gh the state when the positive clock edge hits the CLK
input of the B register. _

During the T, state, Ey and L, are active; therefore, the
adder-subtracter sets up the accumulator (Fig. 10-6¢).
Halfway through this state, the positive clock cdge loads
the sum into the accumulator,

Incidentally, setup time and propagation delay time
prevent racing of the accumulator during this final execution
state. When the positive clock edge hits in Fig. 10-6¢, the
accumulator contents change, forcing the adder-subtracter
.contents (0 change. The new contents retumn to the accu-
or input, but the new contents don't get there until
two propagation delays after the positive clock edge (one
for the accumulator and one for the adder-subtracter). By
then it's too late to set up the accumulator. This prevents
accumulator racing (loading more than once on the same
clock edge).

Figure 10-7 shows the timing diagram for the fetch and
ADD routines. The fetch routine is the same as before: the
T, state loads the PC address into the MAR; the T, state
increments the program counter. the 7, state sends the
addressed instruction 1o the instruction register.

mulat

}\‘r1+4—7?—r<— 7'3—»4—74-——'-]'5 ——y——— Ih-ﬁ

|
I
I
|
|
|
|
|
|
|
[
Cp |
|
|
K
| |
| |
[| |
L, I |
| |
i |
E —
£, { I
I I
| I
Ly | |
I |
|
|
£y I
—
- —— | prm—
L {

Fig. 10-7 Fetch and ADD timing diagram.

pog:;\r::g lthckT‘ state, E;and L, are active; on the next
i clock edge, the address field in the instruction
rchstm: goes to the MAR. During the T state, CE and L
are active; tht):rcforc, the addressed RAM wo’rd is Ioadcs
into the B register midway through the state. During the T,
sIatc, EU and L, are active; when the positive clock cdg:
hits, the sum out of the adder-subtracter is stored in the
accumulator.

SUB Routine

The SUB rouiine is similar to the ADD routine. Figure
10-6a and b show the active parts of SAP-1 during the T,
and Ty states. Du-ing the T, state, a high Sy is sent to the
adder-subtracter of Fig. 10-6¢. The timing diagram is almost
identical to Fig. 10-7. Visualize S low during the T to Ts
states and Sy, high during the Ty state.

OUT Routine

Suppose the instruction register contains the OUT instruction
at the end of a fetch cycle. Then

IR = 1110 XXXX

The instruction field goes to the controller-sequencer for
decoding. Then the controller-sequencer sends out the

control word needed to load the accumulator contents into

the output regisier.
Figure 10-8 shows the active sections of SAP-1 during

the execution of an OUT instruction. Since E, and L are
active. the next positive clock edge loads the accumulator

contents into the output register during the T, statc. The T’

and T, states are nops.
Figure 10-9 1s the timing diagram for the fetch and OUT

routines. Again, the fewch cycle is same: addres¥ state,
increment state, and memory state. During the T, state, E4
and L, are active; this transfers the accumulator word to
the output register when the positive clock edge occurs.

== .
_ T

I MAR. K= =] Add/sub

S it

ham L B

IR <: o | o
103

CON D

T !

CON

Fig. 10-8 T, state of OUT instruction.

Scanned with CamScanner

e Ty == To Ty et~ r4+r5_...,. Te"{ the instruction field 1111 signals the contrbllcr.sequ :
to stop processing data. The controller-sequencer " eng,
ey [S

CLK | I computer by turning off the clock (circuitry discusseq I)ato‘
| 9

>/ Machine Cycle and Instruction Cycle

I

|

l SAP-1 has six T states (three fetch and three execy

| These six states are called a machine cycle (see Fy
= 1n-10a). It takes one machine cycle to fetch apg exe

| each instruction. The SAP-1 clock has a frcquc“cy of
} kHz, equivalent to a period of I ms. Therefore, j; takes
| ms for a SAP-1 machine cycle.

|

|

|

|

I

I

|

|

|

|

I

I

|

|

I

SAP-2isslightly different because some of its instnyey;

- take more than one machine cycle to fetch and exec
Figure 10-10b shows the timing for an instructiop thy
requires two machine cycles. The first three T staes @
the fetch cycle; however, the execution cycle requires the
next nine 7 states. This is because a two-machine-cyq,
instruction is more complicated and needs those ‘extra 7
states to complete the execution. 1
The number of T states needed to fetch and execute n
instruction is called the instruction cycle. In SAP- the
instruction cycle equals the machine cycle. In SAP-2 g
other microcomputers the instruction cycle may equal twg
or more machine cycles, as shown in Fig. 10-10b. |
The instruction cycles for the 8080 and 8085 take frog
one to five machine cycles (more on this later).

*
ut,

F~

o

Fig. 10-9 Fetch and OUT timing diagram.

HLT

i

HLT does not require a control routine because no regi.icrs —

are involved in the execution of an HLT instruction. When EXAMPLE 10-5 '
the IR contains

The 8080/8085 programming manual says that it Ia.ksi

IR = 1111 XXXX thirteen T states to fetch and execute the LDA instructios.
|

1

CLK : |
, . |
i > T3 T4 Ts To
|
- Fetch < Execute— | l
|
Machine cycle - I
{
< Instruction cycle |
i
(a) I
' I
| |
— I
T, T, Tq Ty Te To g T, 7, T B A |
Fetch e Execute - Execute I
Machine cycle 1 Machine cycle
- Instruction cycle -

(b)
Fig. 10-10 (a) SAP-1 instruction cycle; () instruction cycle with
two machine cycles.

12 = S0 R PR SR O SO NS A

Scanned with CamScanner

|
ST TR T IR

10-6 THE SAP-1 MICROPROGRAM

We will soon be analyzing the schematic diagram of the
SAP-1 computer, but. first we need to summarize the i

execution of SAP-1 instructions in a neat table called 2 |
microprogram.

Microinstructions :

The controller-sequencer sends out control words, one !
during each T state or clock cycle. These words are like -
directions telling the rest of the computer what to do. }
Because it produces a small step in the data processing, |
- each control word is called a microinstruction. When looking ;
at the SAP-1 block diagram (Fig. 10-1), we can visualize |
a steady stream of microinstructions flowing out of the
controller-sequencer to the other SAP-1 circuits.

T Ty

Macreinstructions

The instructions we have been programming with (LDA,
ADD, SUB, . . .) are sometimes called macroinstructions
to distinguish them from microinstryuctions. Each SAP-|
macroinstruction is made up of three microinstructions. For
example, the LDA macroinstruction consists of the mi-
croinstructions in Table 10-3. To simplify the appearance
of these microinstructions, we can use hexadecimal chunk-
ing as shown in Table 10-4.

Table 10-5 shows the SAP-1 microprogram, a listing of
each macroinstruction and the microinstructions needed to
carry it out. This table summarizes the execute routines for
the SAP-1 instructions. A similar table can be used with
more advanced instruction sets.

N | RS T (T 1 T ey

o TSR

| e S i e d e i e i 7 e

- 10-7 THE SAP-1 SCHEMATIC
DIAGRAM

In this section we examine the complete schematic diagram
for SAP-1. Figures 10-12 to 10-15 show all the chips,
wires, and signals. You should refer to these figures
throughout the following discussion. Appendix 4 ;_J_ivcs
additional details for some of the more complicated chips.

Scanned with CamScanner

the J input of the Q, flip-flop (pin 1, C38). Because of this,
the T, output is initially high.

The CLK signal drives an active low input. This means
that the negative edge of the CLK signal initiates each T
state. Half a cycle later, the positive edge of the CLK signal
produces register loading, as previously described.

Conﬁol Matrix

The LDA, ADD, SUB, and OUT signals from the instruction
decoder drive the control matrix, C39 to C48. At the same
time, the ring-counter signals, T, to T, are driving the
matrix (a circuit receiving two groups of bits from different
sources). The matrix produces CON, a 12-bit microinstruc-
tion that tells the rest of the computer what to do.

JIn Fig. 10-15, T, goes high, then T, then T, and so on.
Analyze the control matrix and here is what you will find.
A high T, produces a high E; and a low Ly, (address state);
a high T, results in a high C, (increment state); and a high
Ty produces a low CE and a low l—,, (memory state). The
first three T states, therefore, are always the fetch cycle in
SAP-1. In chunked notation, the CON words for the fetch
cycle are

State CON Active Bits
5E3H B T
I BE3H K-
T 263H CE, L,

During the execution states, T through T, go high in
succession. At the same time, only one of the decoded
signals (LDA through OUT) is high. Because of this, the
matrix automatically steers active bits to the correct output
control lines.

For instance, when LDA is high, the only enabled 2-
input NAND gates are the first, fourth, seventh, and tenth.
When T, is high, it activates the first and seventh NAND
gates, resulting in low L,, and low E, (load MAR with
address field). When Ty is high, it activates the fourth and
tenth NAND gates, producing a low CE and a low L, (load
RAM data into accumulator). When T, goes high, none of
the control bits are active (nop).

You should analyze the action of the control matrix
during the execution states of the remaining possibilities:
high ADD, high SUB, and high OUT. Then you will agree
the control matrix can generate the ADD, SUB, and OUT

microinstructions shown in Table 10-5 (SAP-| micropro-
gram).

Operation

Before each computer run, the operator enters the program
and data into the SAP-1 memory. With the program in low

memory and the data in high memory, the operator N,
and releases the clear button. The CLK- am.! CLEK Signal,
drive the registers and counters. 'n?e microinstructjop
of the controller-sequencer determines what happens o
each positive CLK edge. o _
Each SAP-1 machine cycle_bcgms with a fetch cyq)e. >
is the address state, T, is the increment state, and 7, s thé
memory state. At the end of the.fetch cycle, the Instructigy,
is stored in the instruction register. Aftcr- the Instructjg,
field has been decoded, the' control. matrix automaticyy,
generates the correct execution routine. Upon Complegio;!
of the execution cycle, the ring counter resets and the pg,,
ine cycle begins. :
m?:;nzat); procfssing ends when a HLT instructiop i

loaded into the instruction register.

10-8 MICROPROGRAMMING
e

The control matrix of Fig. 10-15 is one way (0 genergy
the microinstructions needed for each execution cycle, Wiy
larger instruction sets, the control matrix becomes very.
complicated and requires hundreds or even thousands of
gates. This is why hardwired control (matrix gates soldere
together) forced designers to look for an alternative way 1.
produce the control words that run a computer.

Microprogramming is the alternative. The basic idea is
to store microinstructions in a ROM rather than produce
them with a control matnix. This approach simplifies the
problem of building a controller-sequencer.

Storing the Microprogram

By assigning addresses and including the fetch routine, we
can come up with the SAP-1 microinstructions shown in
Table 10-6. These microinstructions can be stored in a
control ROM with the fetch routine at addresses OH to 2H,
the LDA routine at addresses 3H to 5H, the ADD routine
at 6H to 8H, the SUB routine at 9H to BH, and the OUT
routine at CH to EH. ‘
To access any routine, we need to supply the correct
addresses. For instance, to get the ADD routine, we need
to s_upply addresses 6H, 7H, and 8H. To get the OuT
routine, we supply addresses CH, DH, and EH. Therefore,
accessing any routine requires three steps:
1.

; Knowing the starting address of the routine

Steppipg through the routine addresses
3. Applying the addresses to the control ROM.

Address ROM

Figure 10-16 shows how o microprogram the SAP-I
computer. It has an addres; ROM, a presenable counter, |
and a control ROM., The address ROM contains the starting
addresses of each routine in Table 10-6. In other words,

Scanned with CamScanner‘

TABLE 10-6. SAP-1 CONTROL ROM

.
Address Contentst Routine Active
OH SE3H Fetch Ep, Ly
IH BE3H s
2H 263H B CE, L,
3H 1A3H LDA Ij_“_ E_,
4H 2C3H CE, L,
SH 3E3H None
6H |A3H ADD Lu. E,
H 2EIH CE, Ly
8H 3C7TH L,, Ey
9H _ IA3H SUB Ly, E;
AH 2EIH CE, Ly
BH 3CFH L., S.. Ep
CH 3F2H ouT E,, L,
DH 3E3H None
EH 3E3H None
FH X X Not used

t CON = GELLCE LEL.E. ScEulilo

Address
ROM
16X 4

[T 11

Ty — LOAD
Presettable

CLK ——q

counter

T
CLR

CLR

= Control

RCM
16X 12

[T 1T T

Microinstruction

Fig. 10-16 Microprogrammed control of SAP-1.

the address ROM contains the data listed in Table 10-7.
As shown, the starting address of the LDA routine is 0011,
the starting address of the ADD routine is 0110, and so on.

When the op-code bits I;I¢lsl, drive the address ROM,
the starting address is generated. For instance, if the ADD

TABLE 10-7. ADDRESS ROM

:Address

Contents Routine
0000 0011 LDA
0001 0110 ADD
0010 1001 SUB
0011 XXXX None
0100 XXXX None
0101 XXXX None
0110 XXXX None
0111 XXXX None
1000 XXXX None
1001 XXXX None
1010 XXXX None
1011 XXXX None
1100 XXXX None
1101 XXXX None
1110 1100 ouT
i1 XXXX None

instruction is being executed, lylglsly i1s 0001, This is the
input to the address ROM; the outrut of this ROM is 0110.

Presettable Counter

When T is high, the load iuput of the presettable counter
is high and the counter loads the starting address from the
address ROM. During the other T states. the counter counts.

Initially. a high CLR signal from the clear-start debouncer
is differentiated to get a narrow positive spike. This resets
the counter. When the computer run begins, the counter
output is 0000 during the T, state, 0001 during the T state,
and 0010 during the T, state. Every fetch cycle is the same
because 0000, 0001, and 0010 come out of the counter
during states T, T, and T;.

The op code in the instruction register controls the
execution cycle. If an ADD instruction has been fetched.
the 1,115, bits are 0001 These op-code bits dnve the
address ROM. producing an output of 0110 (Table 10-7).
This starting address is the input to the presettable counter.
When T, is high, the next negative clock edge loads 0110
into the bresenablc counter. The counter is now preset, and
counting can resume at the starting address of the ADD
rouline.b The counter output is 0110 during the T, state.
0111 during the Ty state, and 1000 during the Ty state.

When the 7, state begins, the leading edgc_(?i the"T,
signal is differentiated to produce a narrow.pOSlll\'t‘ SPILT—
which resets the counter to 0000, the starting address ©
the fetch routine. A new machine cycle then begins.

|

Scanned with CamScanner

Control ROM

The control ROM stores the SAP-1 microinstructions.
During the fetch cycle, it receives addresses 0000, 0001,
and 0010. Therefore, its outputs are

SE3H
BE3H
263H

These microinstructions, listed in Table 10-6, produce the
address state, increment state, and memory state.

If an ADD instruction is being executed, the control
ROM receives addresses 0110, 0111, and 1000 during the
execution cycle. Its outputs are

1A3H
2EIH
3C7H

These microinstructions carry out the addition as previously
discussed.

For another example, suppose the OUT instruction is
being executed. Then the op code is 1110 and the starting
address is 1100 (Table 10-7). Duiing the execution cycle,
the counter output is 1100, 1101, and 1110. The output of
the control ROM is 3F2H, 3E3H, and 3E3H (Table 10-6).
This routine transfers the accumulator contents to the output
port.

Variable Machine Cycle

The microinstruction 3E3H in Table 10-6 is a nop. It occurs
once in the LDA routine and twice in the OUT routine.
These nops are used in SAP-1 to get a fived machine cyvele
for all instructions. In other words, each machine cycle
takes exactly six 7 states, no matter what the instruction.
In some computers a fixed machine cycle is an advantage.
But when speed is important, the nops are a waste of time
and can be.eliminated.

One way to speed up the operation of SAP-1 is to skip
any T state with a nop. By redesigning the circuit of Fig.
10-16 we can eliminate the nop states. This will shorten
the machine cycle of the LDA instruction to five states (7,
T,. T;, Ty, and Ty). It also shortens the machine cycle of
the QUT instruction to four T states (T}, T;, T3, and T).

Figure 10-17 shows one way to get a variable machine
cycle. With an LDA instruction, the action is the same as
before during the T, to T states. When the T, state begins,
the control ROM produces an output of 3E3H (the nop
microinslruction). The NAND gate detects t_his_nop instantly
and produces a Jow output signal NOP. NOP is fed back
o the ring counter through an AND gate, as shown in Fig.
10-18. This resets the ring counter to the T state, and a
n;w machine cycle begins. This reduces the machine cycle
° thc_LDA instruction from six states to five.

Ty ——— t0ap

CL K h— Pregmbh :
Ty . Countey -
CLR |

CLR .

Contrg)
ROM
16X 12

T

7

NOP _LC,QL

Microinstruction
Fig. 10-17 Variable machine cycle.

Ring counter

Fig. 10-18

With the OUT instruction, the first nop occurs in the T
state. In this case, just after the T state begins, the control
ROM produces an output of 3E3H, which is detected by
the NAND gate. The low NOP signal then resets the ring!
counter to the T, state. In this way, we have reduced thcf
machine cycle of the OUT instruction from six states tojE

four.
|

Scanned with CamScanner

Variable machine cycles are commonly used with micro-
processors.’ In the 8085, for example, the machine cycles
take from two to six T states because all unwanted nop
states are ignored.

Adventages

One advantage of micr sprogramming is the elimination of
the instruction decoder and control matrix; both of these
become -very complicated for larger instruction sets. In
other words, it's a lot easier to store microinstructions in a
ROM than it i, to wire an instruction decoder and control
matrix.

Furthermore, cnce you wire an instruction decoder and
control matrix, the only way you can change the instruction

set is b‘y disconnecting and rewiring. This is not necessary
with microprogrammed control; all you have to do is change
the control ROM and the starting-address ROM. This is a

big advantage if you are trying to upgrade equipment sold
earlier.

Summary

In conclusion, most modern microprocessors use micropro-
grammed control instead of hardwired control. The micro-
programming tables and circuits are more complicated than
those for SAP-1, but the idea is the same. Microinstructions
are stored in a control ROM and accessed by applying the
address of the desired microinstruction.

Scanned with CamScanner

