Dr. Apurva Muley (Guest Lecturer)
School of Studies in Physics, Vikram University, Ujjain
Lecture for M. Sc. Physics IV Semester students
Paper-1V: Microprocessor

Unit-2 Logical Instructions

LOGICAL INSTRU

This chapter discusses the logical instructions of our featured
microprocessors. These instructions, along with the arith-
metic and shift and rotate instructions, give us the ability
to alter bits and bytes (data) in a predictable fashion.

You may wish to review logic gates before beginning

this chapter. Microprocessors use logical instructions the
way digital circuits use logic gates.

New Concepts

There are really only four basic logical functions: AND, OR.
'EXCLUSIVE-OR, and NOT. The NAND, NOR, EXCLUSIVE-NOR,
"and NEGate functions are simply extensions of the four
basic functions.

We will look at each of the basic four plus a couple of
other special instructions some of the microprocessors have.

We will also discuss masking, a primary use of the logical
instructions. |

19-1 THE anp INSTRUCTION

When we AND 2 bits or conditions, we are saying that the
output bit, or condition, is true only if both the input bits,
or conditions, are true. For example, there will be a voltage
at the output of a circuit only if there is voltage at both of

\/’ ~ Input Output
B A Y
0 0 0
0 1 0
1 0 0
1 1 1

Fig. 19-1 AND truth table.

UCTIONS
0110 1110
AND 1100 0100
0100 0100
.- ‘ 1 \L——OANDOiso
1ANDOisO
1AND 1is 1
1ANDOiSO
0ANDO iSO
1anD0is0O
\ 1AND 1is 1
0AND1isO

Fig. 19-2 ANDing 2 bytes together.

its inputs. Or, a bit in memory will be 1 only if 2 other
input bits are also 1. Or, a drill will begin to lower only if
the workpiece has been secured and the worker's hands are
away from the bit.

anping Bits

The truth table to AND 2 bits, or conditions, is shown in

Fig. 19-1. Notice that the only way to get a 1 out is © put
two 1s in.

aNping Bytes

We can AND entire bytes, or words also. We simply ipply
the logic shown in the table to each bit. It's almosl like
turning a truth table on its side. For example, a probkm in
which we must AND 2 bytes is shown in Fig. 19-2.

Notice that we have applied the logic from the ANDtruth
table 10 each bit. The only 1s in the answer are in cohmns
where both the inputs are also 1.

EXAMPLE 19-1

Solve the following logical problem.

.~ 1011 1110 AND 0111 0001 is 7777 1M
o

. 305

Scanned with CamScanner

SOLUTJION
10111110
AND 01110001
00110000
Masking

A common use of the AND instruction is to *ND bits or
bytes with a mask. A mask allows us to change some bits
in a certain way while allowing others to pass through
unchanged. Look at the example saown in Fig. 19-3.
~ Notice that the upper nibble of the data byte passeFl
through the 1s of the mask unchanged. However, every bit
of the lower nibble passing through the Os was cleared.
ANDIng a mask to data can be viewed in either of two
ways. You can say that sclected data bits pass through
unchanged while all others are cleared. Or, you can say
that selected data bits are cleared while others pass through
unaltered.

EXAMPLE 19-2

Devise a mask which when aNDed to an 8-bit data byte
will clear all bits except the first 2 (2 least significant bits).

SOLUTION
0000 0011
For example:
1111111 «—data
AND 0000 0011 «— mask

0000 0011

-

19-2 THE or INSTRUCTION

When we OR 2 bits or conditions, we are saying that the
output will be true (or 1) if either of the input bits or
conditions is true (1) or if both of the input bits or conditions
are true.

oring Bits

The truth table to oR 2 bits or conditions is shown in Fig.
19-4.
Notice that you get a 1 out if any input is a 1. Or, to

A 1001 1001 — data
AND 1111 0000 =——mask
1001 0000

Fig. 19-3 Using the AND instruction to mask bits.

306 Digital Computer Electronics

Input m
B | a |y
o | o | o
o | 1+ | 1]
1 | o | 1
\dl 1 1 1

Fig. 19-4 OR truth table.

look at it another way, the only way 1a 81 30 gy -
have Os at both inputs. Ut g

oring Bytes |

We can OR entire bytes, or words also. We sjp
the logic shown in the table to each bit. For ex,
same problem used in the previous section, by q
the 2 bytes together, is shown in Fig. 19.5.

Notice that we have used the logic from the OR
table and applied it to each bit. The only Os in he answer
are in columns where both the inputs are also (.

Ply apply
mple, the
ow ORing

EXAMPLE 19-3

Solve the following logical problem.

< 1011 1110 or 0111 0001 is 2777 299

SOLUTION

s 1011 1110
OR 01110001

1111111

Masking

A common use of the OR instruction is to OR bits or bytes
with a mask. A mask allows some bits to pass through
unchanged while others are changed in a certain way. Look
at the example shown in Fig. 19-6.

0110 1110
OR 1100 0100
1110 1110

|L———-—OAN00iSO

1AN0 OS]

1AN!_JHS1

1AN0Ois !

0aND0isO

1AND O is 1

1AN01?'5_1

_ 0 AND 1is 1

Fig. 19-5 oring two bytes together.

Scanned with CamScanner

1001
OR 1111 0000 <——mask
1 1111 1001
g 19-6 Using the or instruction to mask bits.

1001 =——data

Notice that the lower nibble of the data byte passing
gh the Os of the mask was unchanged while every bit

0! the upper nibble passing through the 1s was set.

& ORing a mask to data can be viewed in either of two

gyays. You can allow selected data bits to pass through

inchanged while all others are set. Or, you can allow

B clected cTd_cj:lta bits to be set while all others pass through
fered.

vise a mask which when ored 1o an 8-bit data byte will
v all bits except the first 2 (2 least significant bits).

0000 0000 «—data
OR 11111100 <«— mask
1111 1100

19-3 THE EXCLUSIVE-OR (EOR, XOR)

INSTRUCTION

hen we EXCLUSIVELY OR (EOR. XOR) 2 bits or conditions,

; % are saying that the output bit or condition is true only
i 'E\jpnc or the other of the input bits or conditions is true,

ut not both. For example, there will be a voltage at the

Input Output
B A Y
0 0 0
0 1 1
1 0 1
o
1 J 1 0

0110 1110
XoR 1100 0100
1010 1010
l t——-()».m’:oiao
1ANDOIs 1
1AND1is0
o 1AND OIS 1.
e 0ANDOiSO
\/ 1ANDOis 1
1AND1is0O
0OAND1is1

Fig. 19-8 xoring two bytes together.

Notice that the only way to get a 1 out is to have ¢ne,
but not both, of the inputs be a 1.

xoring Bytes

We can XOR entire bytes, or words also. We simply apply
the logic shown in the table to each bit. For example, the
same problem shown in the previous two sections, but this
time XORing the 2 bytes, is shown in Fig. 19-8.

Notice that we have used the logic from the XOR truth
table and applied it to each bit. The only Is in the answer
are in columns where one but not both the inputs are 1.

EXAMPLE 19-5

Solve the following logical problem.

SOLUTION
10111110
XOR 01110001
11001111
Masking

A common use of the XOR instruction is to XOR bits or
bytes with a mask. A mask allows some bits to passthrough
unchanged while others are changed in a certain waj. LLook
at the example shown in Fig. 19-9.

Notice that the lower nibble of the data byte passed
through the Os of the mask unchanged while even bit of
the upper nibble passing through the Is was invertid.

XORing a mask to data can be viewed in eitherof two
ways. You can allow selected data bits to pass hrough

1001 1001 =——data
xoR 1111 0000 —=——mesk
c110 1001

Fig. 19-9 Using the XOR instruction to mask bits.

Chapter 19 Logical Instructions 307

Scanned with CamScanner

unchanged while all others are inverted. Or, you can allow

selected data bits to be inverted while all others pass through
unaltered.

EXAMPLE 19-6

Devise a mask which when XoRred to an 8-bit data byte
will invert all bitz =xcept the first 2 (2 least significant bits).

SOLUTION

1111 1100

For example:

IRRA RN
XOrR 1111 1100

0000 0011

«— data
«— mask

18-4 THE nNot INSTRUCTION

When we NOT or invert bits or conditions, we ar: saying
that the output bit or condition is the opposite of the input
bit or condition. For example, if there is a voltage at the
input, there will not be one at the output; or if there is no
voltage at the input, there will be a voltage at the output.

not-Ing (Inverting) Bits

The truth table for the NOT function is shown in Fig.
19-10.

Input | OQutput

A Y

0 1
=7 —

1 0

Fig. 19-10 Nort (ruth table.
NoT-ing (Inverting) Bytes

We can NOT or invert entire bytes, or words also. We
simply apply the logic shown in the table to each bit. An

example of inverting or complementing a number is shown
in Fig. 19-11.

NOT 1111 0000 is 0000 1111

Fig. 19-11 *'NoT-ing"" or inverting a binary number.

Notice that we have changed every Oto a | and ¢
to a 0—that is, we have inverted every bit of the by,
This is the 1's complement of the number.

EXAMPLE
Solve the following logical problem.

19-7

Not 1011 1110 is 2?72 7777

SOLUTION

0100 0001

19-5 THE nEG (NEGATE)
INSTRUCTION

The NeGate instruction finds the 2's complement of a
number. To find the 2's complement, we first find the 1's

complement and then add 1. An example is shown in Fig.
19-12.

Specific Microprocessor
Families

Let’s see how these instructions work in the different
microprocessor families.

18-6 6502 FAMILY

The 6502 has three of the instructions discussed in the New
Concepts section of this chapter plus one instruction not

discussed there. These are the AND. OR, EOR, and BIT
instructions. Let's look at each.

The anp Instruction

The 6502 AND instruction works exactly as described in the
New Concepts section. If we use: the same example we
used in Fig. 19-3 in the New Concepts section, we will
find that the 6502 does in fact AND bytes as discussed
Figure 19-13 shows our original problem and soltion
plus a 6502 program which solves the problem. After
running this program, you will find that the accumuator

contains %0, This is exactly what we expected after99 ¢
was masked with FO,,.

1111 0000 =——number

0000 1111 =——1scomplement
- 1 =—— 2add?

0001

Fig. 19-12 NEGating a number (2's complement).

S08 Dpigital Computer Electronics

G000 —=——2'scomplement (ariginal number NEGated)

Scanned with CamScanner

0101 1111
1010 o000
+ 1

1010 o001

00Do 46 SF LDAR#$SF
ggua 40 NEGA
03 3g WA
Fig. 1922 ys; 1
instructions 8 the 6800/6803 NEG/NEGA/NEGE

Figure 19-22 shows 2
using the negate instructi
After running

N €xample problem and program
on.

ag s sel requires a little explanation.
One way to look at a 2's-complement number is to view it
as.a 1's-complement number with | added 10 it. There s
another point of view, however.

Remember how we described the creation of negative
numbers as being like rotating an odometer backward? The
original number used in this example is 0101 111 1,, which
18 95,,. If we rotate our odometer backward from 00 by 95
places, we will arrive at the binary number 1010 000] .
Rotating the odometer backward from 00 is the same as
subtracting from 00,

Now think about subtracting a number from 00. Would
a borrow from the carry bit be required? Yes, because any
number is larger than 0 and a borrow would be required to
subtract it from 00. To subtract 95 from 00 requires a

~—— original number {95:¢)
~—— 1's complement
-——plus 1

~— 2's complement (-95,¢)

;load A with D101 1111
;2's complement of A
istop

egardicss of what number we would have used. When you
use the NEG instruction, the only time the carry flag won't &

be set is if you negate the number 00, because subtracting i
00 from 00 docs not require a borrow.

19-8 8080/8085/Z280 FAMILY

The 8080/8085/Z80 has four of the instructions discussed 3
in the New Concepts section, although one has a different
name. These are the AND (ANA [AND]). OR (ORA [OR]), XOR
(XRA |XOR]). and NOT (CMA [CPL})) instructions. (Z80 mne-
monics are shown in brackets.) Let’s look at each.

The ana (anp] Instruction

The 8080/8085/Z80 ana [AND] instruction works as de-
scribed in the New Concepts section. If we use the example
from Fig. 19-3 in the New Concepts section, we will find
that the 8080:8085/Z89 does in fact AND bytes as discussed.
Figure 19-23 shows our onginal problem and solution
plus an 8080/8085/Z80 program which solves the problem.
If you will notice the condition of the accumulator and flags
after running this program, you will find that the accumulator
has a 90, in it as we expected. The sign, auxilary carry,

and panty flags will be set. g
borrow, which 1s why the carry flag is set. If you check the 8085/Z80 instruction set, you will find %
If 'you think about it, the carry flag would have been set that the AND instruction affects the sign, zero, wnd parity _i
1001 1001 -——data j
AND 1111 0000 -=—— mask
1001 Q000 :
6065 progranm
1800 3E 99 MVI R,Q9 ;load B with 1001 1001
1802 0Ot FO MVI B,FO 1load B with mask (1111 000OD)
18604 AQ ANR B VAND A with mask
1605 7k HLT :Stop
280 program
& i 1001 1001
3JE 99 LD &,4919 ;load Rk with
i:gg 0t FO LD B,FO ;load B with mask (111l UUE]D).
1804 RO RND B iAND A with mask '
1805 7k HALT yStop

Fig. 19-23 Using the 8080/8085/Z80 ANA [AND] instruction
to mask bits.

312 Digital Computer Electronics

Scanned with CamScanner

1601 -—— data
0000 <—— mask

1001
oR 1111
1111 1001
8085 program
1800 3E 99 MVI A,99
1402 0Ot FO MVI B,FO
1404 EO ORA B
180¢ 7p HLT
280 progran
1800 3E Q9 LD A,99
laue Uk FO LD B,FO
1804 BOD OR B
1805 76 HALT

Fig. 19-24 Using the 8085/Z80 or instruction to mask bits.

flags. The AND instruction always sets the auxiliary carry
[half-carry] flag and always clears the carry flag. (Note: If
you are using an 8080 microprocessor, the auxiliary flag
works a little differently than it does in the 8085 and Z80.
Check the Expanded Table.)

The sign flag 1s set because this is a negative number.
The zero flag is clear because the result was not zero. The
auxiliary flag is set because it is always set by this instruction.
The parity flag is set because there are an even number of
Is. And the carry flag is clear because that flag is always
cleared by the AND instruction.

The ora (oRr] Instruction

The 8085/Z80 or instruction also works as described in the
New Concepts section. We'll use the example from Fig.
19-6 in the New Concepts section.

Figure 19-24 shows our original problem and solution
plus an 8085/Z80 program which solves the problem. After
entering and running the program, you will find that the

:load A with number (1003} 1001)
:load B with mask (1111 0000)
;OR number and mask

;stop

;load A with number (1001 1001)
;load B with mask (1111 00DO)
;OR number and mask

;stop

accumulator has a value of F9,4 and that the sign and parity
flags have been set.

We expected the accumulator to have F9,, after Oring.
The OR instruction set the sign flag because F9,, is a 2's-
complement negative number. The parity flag is set because
there are an even number of Isin F9,¢ (1111 1001,). The
zero flag is clear because the result (F9,,) is not zero. All
other flags are automatically cleared by the OR instruction.

The xra (xor] Instruction

Let’s look at the 8085/Z80 xOR instruction. If we use the
example from Fig. 19-9 in the New Concepts section, we’ll
find that the 8085/Z80 does XOR bytes as discussed.

Figure 19-25 shows our original problem and solution
plus an 8085/Z80 program which solves the problem. After
entering and running the program, you will find that the
accumulator contains €9, and that only the parity flag is
set. Examine the figure and the Expanded Table to find
why this is 0.

~— data

0000 =-——mask

yload A with number (1001 1.001)
;load B with mask (1111 0000)
;XOR number with mask

-;stop

;load A with number ({1001 1001}

;load B with mask

(1111 0000)

;XOR number with mask

;stop

1001 1001
XOR 1111
0110 1001
8085 program
1800 3E 99 MVI A,99
1802 0k FO MVI B,FO
1604 A8 XRA B
1805 76 HLT
260 progranm
1800 3E 99 LD A.99
1802 0Ob FO LD B,FO
1604 A8 XOR B
1605 76 HALT

Fig. 19-25 Using the 8085/Z80 XOR instruction to mask
bits.

Chapter 19 Logical Instructions 313

Scanned with CamScanner

