Dr. Kamal tami (Guest Lecturer)
School of studies in physics, Vikram University, ujgam
M.SC. II semester

Paper -II, Unit II
13, May, 2020
ARTIFICIAL SATELLITES \rightarrow
A body which revolves constantly round a compercitively much larger body is said to be satellite, like the motion of a planet and its orbit around the sun, We know that the earth and other planets revolve round the sun in their specified orbits.

The moon readies round the earth and the Planets Jupiter and Saturn have six and nine moons respectively revolving around them. All these ave the examples of natural satellites.
scientists have also been able to placed monmade statellites, recloluing round the earth or sun. They are called artificial satellites. The Theory discussed above for the orbits and planetary motion is valid for the discussion of satellites.

An arfificial satellite of the earth is a body, place in a stable orbit around the earth with the halt of multistage rocket. In order to launch a selenite in a stable orbit, first it is necessary to take the satellite to there altitude 4, wile at tie e point P by some mechanism, it is given the necessary orbiting velocity, called the insertion velocity v_{i} (in fig.).

The total Energy of the satulich at p relative to the earth is given by

$$
\begin{equation*}
E=\frac{1}{2} m v_{i}^{2}-\frac{G M m}{R+h} \tag{1}
\end{equation*}
$$

Where m is the mass of the satellite and M that of the earth having radius R.

Fig. 1 Elliptical path of a body projected horizontally from a hight h above the earth surface.

The orbit will be an ellipse, a parabola, depending On whetter E is negative, zero or positive. In each case the centre of the earth is at one focus of the Path Therefore, the satellite will moving in an elliptica orbit if,

$$
\begin{equation*}
v_{l}^{2}<\frac{2 G M}{R+h} \tag{2}
\end{equation*}
$$

The total energy E determines the size or semimayor axis of the orbit. However the shape or eccentricity e of the orbit is determined by both total Energy E and angular momentum I by the relation:

$$
\begin{equation*}
e=\sqrt{1+\frac{2 E J^{2}}{m k^{2}}} \tag{3}
\end{equation*}
$$

with $K=G M m$. For elliptical orbits, layer the angular momentum, the less elongated is the orbit (Fig. 2)

For circular orbit, the
For circular orbit, the insertion velocity is found by equating the centripetal force $m u^{2} / r$ to the gravitational force $G M m / r^{2}$ i.e.

$$
\begin{equation*}
\frac{m v_{i}^{2}}{r}=\frac{G M m}{r^{2}} \text { or } v_{i}^{2}=\frac{G M}{r}=\frac{G M}{R+h} \tag{4}
\end{equation*}
$$

Where $\gamma=R$ th
Remember that for circular orbit $e=0$, so that

$$
\begin{aligned}
& 1+\frac{2 E J^{2}}{m k^{2}}=0 \quad\left\{\begin{array}{l}
J=m \text { wa ; Angularmomentum } \\
\& E=-\frac{k}{2 a} ; \text { from eq }(10, C)
\end{array}\right. \\
& 1+2 \times\left(-\frac{k}{2 a}\right) \times \frac{m^{2} v_{i}^{2} a^{2}}{m k^{2}} \text { or } v_{i}^{2}=\frac{G M}{R+h}
\end{aligned}
$$

where e $r=a=R+h, k=G M m$ and $J=m u(R+h)$
For the Circular orbit at the height 4 above the earth's surface, the period. of occuolution is

$$
\begin{equation*}
T=\frac{2 \pi r}{v_{i}}=\frac{2 \pi(R+h)}{v_{i}}=\frac{2 \pi(R+h)^{3 / 2}}{\sqrt{G M}} \tag{5}
\end{equation*}
$$

Geosynchronous orbit: if the period of revolution is equal to the period of earth's diuranal (one day) rotation, the orbit is said to be geosychronous orbit.

For a geosynchronous orbit, the eccentricity can have any value and the orbit can have any orientation with respect to the equator of the earth.

Geostationary orbit: If the height of on artificial satellite at equator above the earth's surface is such than its period of revolution is exactly equal to the period of rotation of the earth, thentere satellite would appear stationary over a point on earth's equator. such a satellite is caned geostationary satellite and its orbit is Called geostationary orbit. Turarefore for a geostationary satellite we must have the orbit
(1) to be geosynchronous
(2) to be circular
(3) to stay over the geographical equator of the each

Uses of Artificial satellites:-
Artificial satellites are used in the followings
(1) Distance transmission of radio and TV signals.
(2) To study upper regions of the atmosphere.
(3) High atifude satellites for astronomical observations (as the effects of atmosphere are not present)
(4) weather forecasting
(5) Eearth measurements (gravitation and magnetic field)
Q. 1 An artificial satellite is reulluing round the earth at a distance of 620 km . Calculate the orbital velocity and the period of reuslution. Radius of earth $=6380 \mathrm{~km}$ \& $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
sol. Radius of earth's satellite orbit $r=R+h=7 \times 10^{6} \mathrm{~m} / \mathrm{sec}$. period of revolution $T=\frac{2 \pi r}{R} \sqrt{\frac{\gamma}{g}}=5775 \mathrm{sec}$.
a orbital velocity

$$
v=R \sqrt{\frac{g}{T}}=7.55^{-} \times 10^{3} \mathrm{~m} / \mathrm{sec} .
$$

Figure 2 Elliptical orbits fir different values of the angular momentum J with same energy E, various orbits have the same focus and semi-major axis but differing in eccentricity.

