M.Sc. II Sem

PHY-201 [Atomic and Molecular Physics]

Unit- III
 Nuclear Magnetic Spectroscopy

Ratna Agrawal
Guest Lecturer
School of Studies in Physics
Vikram University, Ujjain INDIA

(Email : ratnagarwal@gmail.com)

Outline

Introduction to Spectroscopy

- Properties of Spin
*The Nuclear Magnetic Moment
* The Nuclear Spin Quantum Number
- Magnetic Properties of atomic Nuclei
* Nuclear precession in Magnetic field

Semi-Classical Description
Quantum mechanical Description
Quantum- classical correspondence

Introduction to Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation (light) with matter.

The Electromagnetic Spectrum

NMR uses electromagnetic radiation in the radio frequency range

- •Long wavelength, very low energy
- -Low energy has significant consequences:
- •Sharp signals (Good)
- •Poor sensitivity (Bad)
- •Longer experiment time (Bad)

Properties of Spin

Spin is a fundamental property of nature

- Any unpaired electron, proton, or neutron will possess a spin of $1 / 2$
- Atomic nuclei, which are composed of protons and neutrons, may also possess spin
The spin of an atomic nucleus is determined by the number of protons and neutrons
- Atoms with odd number of protons will have spin
- Atoms with odd number of neutrons will have spin
- Atoms with EVEN number of protons and neutrons will not have spin
The value of the nuclear spin is defined by I, the nuclear spin quantum number and can have values of $(I=0, I / 2, I$, 3/2, 2, 5/2, ...)
A nucleus of spin I can exist in (2I+I) spin states.

The Nuclear Magnetic Moment

-All atomic nuclei can be characterized by a nuclear spin quantum number, l. I can be ≥ 0 and any multiple of $1 / 2$

- Nuclei with I= 0 do not possess nuclear spin and consequently are termed 'NMR silent'.
-All nuclei with $1 \neq 0$ possess spin, charge and angular momentum P, resulting in a nuclear magnetic moment μ.

$$
\mu=\gamma P
$$

Where Y is the gyromagneticratio of the nucleus.

Values of γ can be positive or negative and determine the sense of precession and thus the direction of the magnetic moment.

I = the nuclear spin quantum number

For Nuclei of:
Odd Mass
Even Mass/Even Charge
Even Mass/Odd Charge

$\underset{\mathrm{I}=1 / 2}{\text { Spinning sphere }}$ $\mathrm{I}=1 / 2$

Spinning ellipsoid $\mathrm{I}=1,3 \Omega, 2, \ldots$.

If $I=0$, $N M R$ Inactive
If $I \geq 1$, Quadrupolar (non-spherical nuclear charge distribution)

Magnetic properties of atomic nuclei

- The magnetic moment (μ)is a vector quantity that has both magnitude and direction
- -In the absence of an external magnetic field the magnetic moments (μ) are randomly orientated.

Nuclear Precession in a Magnetic Field

Semi-Classical Description

Example:

For ${ }^{1} \mathrm{H}$ nuclei (protons)
$\left(\gamma=2.68 \times 10^{8} \mathrm{rad} \mathrm{T}^{-1} \mathrm{~s}^{-1}\right)$
in a magnetic field of
11.74 Tesla
$\omega=3.15 \times 10^{9} \mathrm{rad} \mathrm{s}^{-1}$
or
$\nu=\omega / 2 \pi=5 \times 10^{8} \mathrm{~s}^{-1}$
$=500 \mathrm{MHz}$

Magnetic Field B_{0}

The Magnetic Field (\mathbf{B}_{0}) exerts torque on angular momentum (\mathbf{L}) and causes Nuclear Precession, analogous to precession of spinning top. The frequency of the precession (ω), often called the Larmor frequency, is proportional to the gyromagnetic ration (γ) and the strength of the external magnetic field $\left(\mathbf{B}_{0}\right)$.

Nuclear Precession in a Magnetic Field

Quantum Mechanical Description

In the macroscopic world the two magnets can be aligned in an infinite number of orientations. At the atomic level, these alignments are quantized and the number of orientations (spin states) are equal to $2 \mathrm{I}+1$. We will only deal with spin $1 / 2$ nuclei.

The different quantized orientations will each have an energy level determined by the Zeeman splitting

Nuclear Precession in a Magnetic Field

Quantum Mechanical Description

The energy levels are more complicated for $I>1 / 2$

Zeeman Splitting

$\mathrm{I}=0$
$I=1 / 2$
$\mathrm{I}=1$
$I=3 / 2$

Nuclear Precession in a Magnetic Field

In NMR spectroscopy we are going to perturb the spin states by stimulating transitions between the energy levels.

Nuclear Precession in a Magnetic Field

Thank You

