
Socket Functions

Page 1 By: Pragya Singh Tomar
 ICS, Vikram University, Ujjain

The Socket Function

To perform network I/O, the first thing a process must do is, call the socket function, specifying

the type of communication protocol desired and protocol family, etc.

#include <sys/types.h>

#include <sys/socket.h>

int socket (int family, int type, int protocol);

This call returns a socket descriptor that you can use in later system calls or -1 on error.

Parameters

family − It specifies the protocol family and is one of the constants shown below −

Family Description

AF_INET IPv4 protocols

AF_INET6 IPv6 protocols

AF_LOCAL Unix domain protocols

AF_ROUTE Routing Sockets

AF_KEY Ket socket

type − It specifies the kind of socket you want. It can take one of the following values −

Type Description

SOCK_STREAM Stream socket

SOCK_DGRAM Datagram socket

SOCK_SEQPACKET Sequenced packet socket

SOCK_RAW Raw socket

protocol − The argument should be set to the specific protocol type given below, or 0 to select

the system's default for the given combination of family and type −

Protocol Description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport protocol

Socket Functions

Page 2 By: Pragya Singh Tomar
 ICS, Vikram University, Ujjain

The connect Function

The connect function is used by a TCP client to establish a connection with a TCP server.

#include <sys/types.h>

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

This call returns 0 if it successfully connects to the server, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• serv_addr − It is a pointer to struct sockaddr that contains destination IP address and

port.

• addrlen − Set it to sizeof(struct sockaddr).

The bind Function

The bind function assigns a local protocol address to a socket. With the Internet protocols, the

protocol address is the combination of either a 32-bit IPv4 address or a 128-bit IPv6 address,

along with a 16-bit TCP or UDP port number. This function is called by TCP server only.

#include <sys/types.h>

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr,int addrlen);

This call returns 0 if it successfully binds to the address, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• my_addr − It is a pointer to struct sockaddr that contains the local IP address and port.

• addrlen − Set it to sizeof(struct sockaddr).

The listen Function

The listen function is called only by a TCP server and it performs two actions −

• The listen function converts an unconnected socket into a passive socket, indicating that

the kernel should accept incoming connection requests directed to this socket.

• The second argument to this function specifies the maximum number of connections the

kernel should queue for this socket.

#include <sys/types.h>

Socket Functions

Page 3 By: Pragya Singh Tomar
 ICS, Vikram University, Ujjain

#include <sys/socket.h>

int listen(int sockfd,int backlog);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• backlog − It is the number of allowed connections.

The accept Function

The accept function is called by a TCP server to return the next completed connection from the

front of the completed connection queue. The signature of the call is as follows −

#include <sys/types.h>

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

This call returns a non-negative descriptor on success, otherwise it returns -1 on error. The

returned descriptor is assumed to be a client socket descriptor and all read-write operations will

be done on this descriptor to communicate with the client.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• cliaddr − It is a pointer to struct sockaddr that contains client IP address and port.

• addrlen − Set it to sizeof(struct sockaddr).

The send Function

The send function is used to send data over stream sockets or CONNECTED datagram sockets.

If you want to send data over UNCONNECTED datagram sockets, you must use sendto()

function.

You can use write() system call to send data. Its signature is as follows −

int send(int sockfd, const void *msg, int len, int flags);

This call returns the number of bytes sent out, otherwise it will return -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• msg − It is a pointer to the data you want to send.

Socket Functions

Page 4 By: Pragya Singh Tomar
 ICS, Vikram University, Ujjain

• len − It is the length of the data you want to send (in bytes).

• flags − It is set to 0.

The recv Function

The recv function is used to receive data over stream sockets or CONNECTED datagram

sockets. If you want to receive data over UNCONNECTED datagram sockets you must use

recvfrom().

You can use read() system call to read the data. This call is explained in helper functions

chapter.

int recv(int sockfd, void *buf, int len, unsigned int flags);

This call returns the number of bytes read into the buffer, otherwise it will return -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• buf − It is the buffer to read the information into.

• len − It is the maximum length of the buffer.

• flags − It is set to 0.

The sendto Function

The sendto function is used to send data over UNCONNECTED datagram sockets. Its signature

is as follows −

int sendto(int sockfd, const void *msg, int len, unsigned int flags, const

struct sockaddr *to, int tolen);

This call returns the number of bytes sent, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• msg − It is a pointer to the data you want to send.

• len − It is the length of the data you want to send (in bytes).

• flags − It is set to 0.

• to − It is a pointer to struct sockaddr for the host where data has to be sent.

• tolen − It is set it to sizeof(struct sockaddr).

The recvfrom Function

The recvfrom function is used to receive data from UNCONNECTED datagram sockets.

Socket Functions

Page 5 By: Pragya Singh Tomar
 ICS, Vikram University, Ujjain

int recvfrom(int sockfd, void *buf, int len, unsigned int flags struct

sockaddr *from, int *fromlen);

This call returns the number of bytes read into the buffer, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• buf − It is the buffer to read the information into.

• len − It is the maximum length of the buffer.

• flags − It is set to 0.

• from − It is a pointer to struct sockaddr for the host where data has to be read.

• fromlen − It is set it to sizeof(struct sockaddr).

The close Function

The close function is used to close the communication between the client and the server. Its

syntax is as follows −

int close(int sockfd);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

The shutdown Function

The shutdown function is used to gracefully close the communication between the client and the

server. This function gives more control in comparison to the close function. Given below is the

syntax of shutdown −

int shutdown(int sockfd, int how);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

• sockfd − It is a socket descriptor returned by the socket function.

• how − Put one of the numbers −

▪ 0 − indicates that receiving is not allowed,

▪ 1 − indicates that sending is not allowed, and

▪ 2 − indicates that both sending and receiving are not allowed. When how is set to

2, it's the same thing as close().

