Scaling

Scaling is used to change the size of an object. The size can be increased or decreased. The scaling three factors are required $\mathrm{S}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$ and S_{z}.
$\mathrm{S}_{\mathrm{x}}=$ Scaling factor in x - direction
$S_{y}=$ Scaling factor in y-direction
$\mathrm{S}_{\mathrm{z}}=$ Scaling factor in z-direction

Original
(a)

Matrix for Scaling

$$
\left\{\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right\}
$$

Scaling of the object relative to a fixed point

Following are steps performed when scaling of objects with fixed point (a, b, c). It can be represented as below:

1. Translate fixed point to the origin
2. Scale the object relative to the origin
3. Translate object back to its original position.

Note: If all scaling factors $S_{x}=S_{y}=S_{z}$. Then scaling is called as uniform. If scaling is done with different scaling vectors, it is called a differential scaling.

In figure (a) point (a, b, c) is shown, and object whose scaling is to done also shown in steps in fig (b), fig (c) and fig (d).

