APPLICATION OF SCHRODINGER EQUATION TO UNDERSTAND THE HYDROGEN ATOM

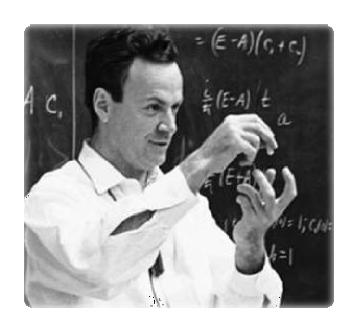
Dr. Anshumala Vani

SCHOOL OF STUDIES IN CHEMISTRY & BIOCHEMISTRY

"I think I can safely say that nobody understands quantum mechanics."

Ch. 6, "Probability and Uncertainty"

-Richard Feynman



CONTENTS

- > Wave function and it's physical significance.
- > Schrödinger time independent equation.
- > Application of the Schrödinger Equation to the HydrogenAtom.
- > Solution of the Schrödinger Equation to the HydrogenAtom.
- > Solutions to radial, angular and azimuthal equation.
- Quantum Numbers.
- Normalized Spherical Harmonics

The whole aim of this project is to convert ...

This This Into

• WAVE FUNCTION AND IT'S PHYSICAL SIGNIFICANCE (ψ)

The physical significance or interpretation of $|\psi|^2$ or $\psi \psi^*$ was given by Max Born in 1927.

1. ψ^2 or $\psi\psi^*$ represents probability per unit volume, of finding a particle described by a wave function at a perticular point (x,y,z) at time 't' in that volume.

i.e. $\psi^2 = \frac{p}{d}$

Max Born

IMPORTANT CHARACTERISTICS OF A WAVE FUNCTION ASSOCIATED WITH WAVE

1. Wave function should be normalised. i.e. it should satisfy the following condition:

$$\int_{-\infty}^{\infty} \psi^2 dx dy dz = 1$$

- 2. Wave function should be finite. ∞ probability has no meaning.
- 3. It should have a single value. (as at perticular point probability can have only one value.

SCHRODINGER TIME INDEPENDENT EQUATION

Schrodinger used analogy of stationary waves on string for matter waves.

For a particle having position coordinates (x,y,z) and having wave function ψ equation of matter wave is

$$\frac{d^2\psi}{dt^2} = u^2\nabla^2\psi \quad , \quad \text{where } \nabla^2 = (\frac{d^2}{dx^2} + \frac{d^2}{dy^2} + \frac{d^2}{dz^2})$$
= Laplacian Operator

The solution of this equation is given as,

 $\psi=\psi_0 e^{-i\omega t}$, where $\omega=2\pi
u$ and $\mathrm{u}=\mathrm{v}\lambda$

Double differentiating and substituting in above equation we get,

$$\nabla 2\psi + \frac{4\pi^2}{\lambda^2}\psi = 0$$

On further simplification we get,

$$\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E - V) \psi = 0$$

Where,

h = Planck's constant

m = mass of particle

E = total energy of particle

V = potential energy of particle

Application of the Schrödinger Equation to the Hydrogen Atom

The approximation of the potential energy of the electronproton system is electrostatic:

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

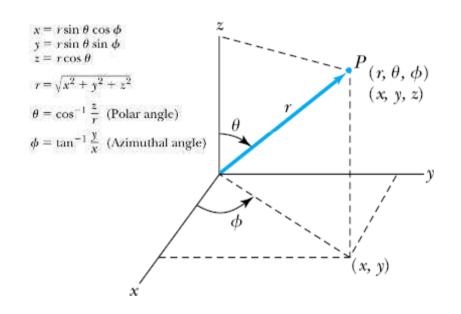
 Rewrite the three-dimensional time-independent Schrödinger Equation.

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial\! x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\psi(\vec{r})+\left(-k\frac{Ze^2}{r}\right)\psi(\vec{r})=E\psi(\vec{r})$$

- For Hydrogen-like atoms (He+ or Li++)
- Replace e^2 with Ze^2 (Z is the atomic number).
- Use appropriate reduced mass μ .

Application of the Schrödinger Equation

The potential (central force) *V*(*r*) depends on the distance *r* between the proton and electron.



Transform to spherical polar coordinates because of the radial symmetry.

Insert the Coulomb potential into the transformed Schrödinger equation.

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{2\mu}{\hbar^2}(E-V)\psi = 0$$

Application of the Schrödinger Equation

- The wave function ψ is a function of r, θ , \emptyset .
 - 1. Equation is separable.
 - 2. Solution may be a product of three functions.

$$\psi(r,\theta,\phi) = R(r)f(\theta)g(\phi)$$

We can separate Equation into three separate differential equations, each depending on one coordinate: r, θ , or ϕ

Solution of the Schrödinger Equation for Hydrogen

Substitute into Equation and separate the resulting equation into three equations: R(r), $f(\theta)$, and $g(\emptyset)$.

Separation of Variables

The partial differential equations of R(r), $f(\theta)$, and $g(\emptyset)$ are

$$\frac{\partial \psi}{\partial r} = fg \frac{\partial R}{\partial r} \qquad \frac{\partial \psi}{\partial \theta} = Rg \frac{\partial f}{\partial \theta} \qquad \frac{\partial^2 \psi}{\partial \phi^2} = Rf \frac{\partial^2 g}{\partial \phi^2}$$

Substitute them into main equation

$$-\frac{\sin^2\theta}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) - \frac{2\mu}{\hbar^2}r^2\sin^2\theta(E-V) - \frac{\sin\theta}{f}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) = \frac{1}{g}\frac{\partial^2g}{\partial\phi^2}$$

• Multiply both sides by $r^2 \sin^2 \theta / Rfg$

$$\frac{fg}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{Rg}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{Rf}{r^2\sin^2\theta}\frac{\partial^2 g}{\partial\phi^2} + \frac{2\mu}{\hbar^2}(E - V)Rfg = 0$$

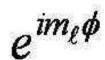
Solution of the Schrödinger Equation

- Only r and θ appear on the left side and only \emptyset appears on the right side of Equation.
- \blacktriangleright The R.H.S. of equation is function of \emptyset .
- The L.H.S. is function of r and θ .
- This implies ONLY ONE THING
- Each side needs to be equal to a constant for the equation to be true.

Set the constant $-m_{\ell^2}$ equal to the right side of Equation

$$\frac{d^2g}{d\phi^2} = -m_\ell^2 g \qquad ----- \text{ azimuthal equation}$$

It is convenient to choose a solution to be



Solution of the Schrödinger Equation

- $e^{im_{\ell}\phi}$ satisfies equation for any value of m_{ℓ} .
- The solution be single valued in order to have a valid solution for any Φ , which is

$$g(\phi) = g(\phi + 2\pi) \longrightarrow e^{0} = e^{2\pi i m_{\ell}}$$
$$g(\phi = 0) = g(\phi = 2\pi)$$

- m_{ℓ} to be zero or an integer (positive or negative) for this to be true.
- Set the left side of eqn equal to $-m_{\ell^2}$ and rearrange it.

$$\frac{1}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{2\mu r^2}{\hbar^2}(E - V) = \frac{m_\ell^2}{\sin^2\theta} - \frac{1}{f\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right)$$

• Everything depends on r on the left side and θ on the right side of the equation.

Solution of the Schrödinger Equation

• Set each side equal to constant $\ell(\ell+1)$.

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{2\mu}{\hbar^2}\left[E - V - \frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2}\right]R = 0$$

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{df}{d\theta} \right) + \left[\ell(\ell+1) - \frac{m_{\ell}^{2}}{\sin^{2}\theta} \right] f = 0$$

----Angular equation

$$\frac{d^2g}{d\phi^2} = -m_\ell^2 g$$

----Angular equation

Schrödinger equation has been separated into three ordinary second-order differential equations each containing only one variable.

Solution of the Radial Equation

- The radial equation is called the associated Laguerre equation and the solutions R that satisfy the appropriate boundary conditions are called associated Laguerre functions.
- Assume the ground state has $\ell=0$ and this requires $m_\ell=0$.

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{2\mu}{\hbar^2}(E - V)R = 0$$

The derivative of $r^2 \frac{dR}{dr}$ yields two terms. Write those terms and insert in equation

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right)R = 0$$

Solution of the Radial Equation

Try a solution $R = Ae^{-r/a_0}$ A is a normalized constant. a_0 is a constant with the dimension of length. Take derivatives of R and insert them into Eqn

$$\left(\frac{1}{a_0^2} + \frac{2\mu}{\hbar^2}E\right) + \left(\frac{2\mu e^2}{4\pi\varepsilon_0\hbar^2} - \frac{2}{a_0}\right)\frac{1}{r} = 0$$

To satisfy this Eqn for any r is for each of the two expressions in parentheses to be zero. Set the second parentheses equal to zero and solve for a_0 .

$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{\mu e^2}$$

Set the first parentheses equal to zero and solve for *E*.

$$E = -\frac{\hbar^2}{2\mu a_0^2} = -E_0$$

Both equal to the Bonr result.

Quantum Numbers

- The appropriate boundary conditions to and (7.11) leads to the following restrictions on the quantum numbers ℓ and m_{ℓ} :
 - $\ell = 0, 1, 2, 3, \dots$
 - $m_{\ell} = -\ell, -\ell + 1, \ldots, -2, -1, 0, 1, 2, \ell, \ell 1, \ell$
 - $|m_{\ell}| \leq \ell$ and $\ell < 0$.
- The predicted energy level is

$$E_n = -\frac{E_0}{n^2}$$

Hydrogen Atom Radial Wave Functions

First few radial wave functions $R_{n\ell}$

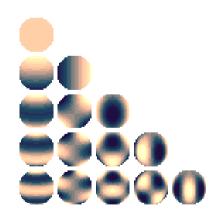
Table	7.1	Hydrogen Atom Radial Wave Functions
n	l	$R_{n\ell}(r)$
1	0	$\frac{2}{(a_0)^{3/2}}e^{-r/a_0}$
2	0	$\left(2-rac{r}{a_0} ight)\!rac{e^{-r/2a_0}}{\left(2a_0 ight)^{3/2}}$
2	1	$rac{r}{a_0} rac{e^{-r/2a_0}}{\sqrt{3}(2a_0)^{3/2}}$
3	0	$\frac{1}{(a_0)^{3/2}} \frac{2}{81\sqrt{3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0}$
3	1	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{6}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}$
3	2	$\frac{1}{(a_0)^{3/2}} \frac{4}{81\sqrt{30}} \frac{r^2}{a_0^2} e^{-r/3a_0}$

• Subscripts on R specify the values of n and ℓ .

Solution of the Angular and Azimuthal Equations

- The solutions for Azimuthal equation are $e^{im_{\ell}\phi}$ or $e^{-im_{\ell}\phi}$.
- Solutions to the angular and azimuthal equations are linked because both have m_{ℓ} .
- Group these solutions together into functions.

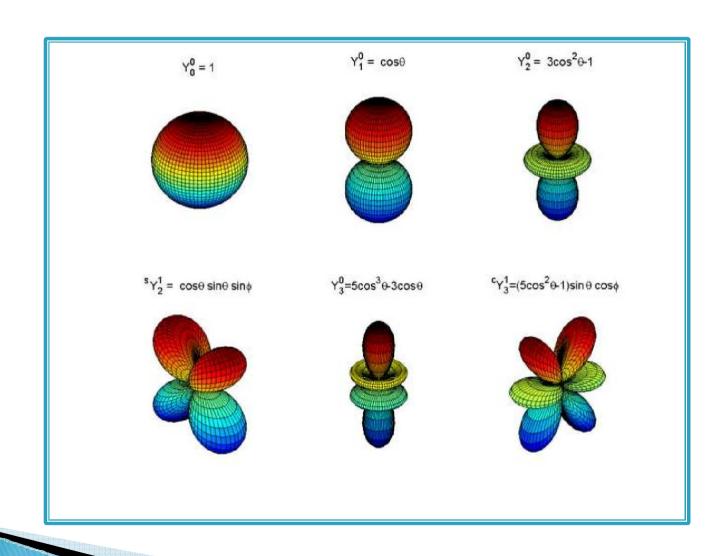
$$Y(\theta, \phi) = f(\theta)g(\phi)$$
 ---- spherical harmonics



Normalized Spherical Harmonics

Table 7.2	Normalized	d Spherical Harmonics $Y(\theta, \phi)$			
ℓ	m_ℓ	$Y_{\ell m_{\ell}}$			
0	0	$\frac{1}{2\sqrt{\pi}}$			
1	0	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$			
1	±1	$\mp \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta \ e^{\pm i\phi}$			
2	0	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$			
2	±1	$\mp \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta \ e^{\pm i\phi}$			
2	± 2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta\ e^{\pm2i\phi}$			
3	0	$\frac{1}{4}\sqrt{\frac{7}{\pi}}(5\cos^3\theta - 3\cos\theta)$			
3	±1	$\frac{1}{8}\sqrt{\frac{21}{\pi}}\sin\theta(5\cos^2\theta-1)e^{\pm i\phi}$			
3	±2	$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\sin^2\theta\cos\theta\ e^{\pm2i\phi}$			
3	±3	$\mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin^3 \theta \ e^{\pm 3i\phi}$			
© 2006 Brooks/Cole - Thomson	© 2006 Brooks/Cole - Thomson				

Normalized Spherical Harmonics



Solution of the Angular and Azimuthal Equations

The radial wave function R and the spherical harmonics Y determine the probability density for the various quantum states. The total wave function $\psi(r,\theta,\phi)$ depends on n, ℓ , and m_{ℓ} . The wave function becomes

$$\psi_{n\ell m_{\ell}}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell m_{\ell}}(\theta,\phi)$$

Quantum Numbers

The three quantum numbers:

- *n* Principal quantum number
- \circ ℓ Orbital angular momentum quantum number
- \circ m_ℓ Magnetic quantum number

The boundary conditions:

 $n = 1, 2, 3, 4, \dots$ Integer

 $\ell = 0, 1, 2, 3, ..., n-1$ Integer

 $m_{\ell} = -\ell, -\ell+1, \ldots, 0, 1, \ldots, \ell-1, \ell$ Integer

The restrictions for quantum numbers:

- $\cdot n > 0$
- $\circ \ell < n$
- $|m_{\ell}| \leq \ell$

Principal Quantum Number n

- It results from the solution of R(r) because R(r) includes the potential energy V(r).
 - The result for this quantized energy is

$$E_n = \frac{-\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_0 \hbar} \right)^2 \frac{1}{n^2} = -\frac{E_0}{n^2}$$

The negative means the energy *E* indicates that the electron and proton are bound together.

Orbital Angular Momentum Quantum Number {

- It is associated with the R(r) and $f(\theta)$ parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ with $\vec{L} = m v_{\text{orbital}} r$.
- ℓ is related to L by $L = \sqrt{\ell(\ell+1)}h$
- In an $\ell = 0$ state, $L = \sqrt{0(1)}\hbar = 0$

It disagrees with Bohr's semiclassical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

Orbital Angular Momentum Quantum Number {

- lack A certain energy level is **degenerate** with respect to ℓ when the energy is independent of ℓ .
- Use letter names for the various ℓ values.

```
\ell = 0 1 2 3

\cdot Letter = s p d f
```

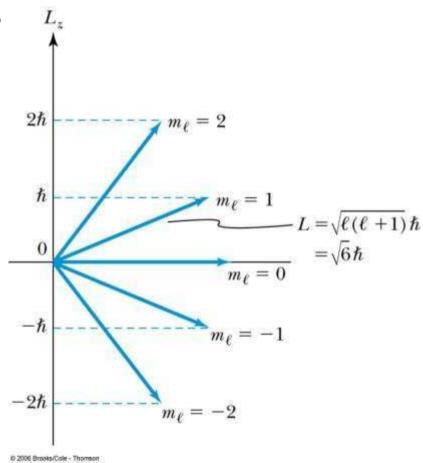
- lacktriangle Atomic states are referred to by their n and ℓ .
- A state with n=2 and $\ell=1$ is called a 2p state.
- The boundary conditions require $n > \ell$.

Magnetic Quantum Number m_{ℓ}

- \rightarrow The angle Φ is a measure of the rotation about the z axis.
- > The solution for g(Φ) specifies that m_ℓ is an integer and related to the z component of L.

$$L_z = m_\ell \hbar$$

- > The relationship of L, L_z , ℓ , and m_ℓ for $\ell = 2$.
- > $L = \sqrt{\ell(\ell+1)}h = \sqrt{6}h$ is fixed because L_z is quantized.
- > Only certain orientations **I**f are possible and this is called **space quantization**.

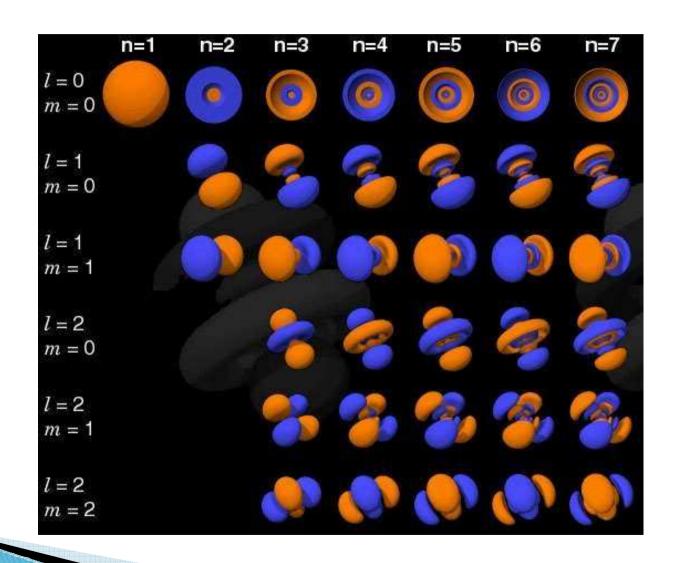


Magnetic Quantum Number m_l

- Quantum mechanics allows \vec{L} to be quantized along only one direction in space. Because of the relation $L^2 = L_{\chi}^2 + L_{y}^2 + L_{z}^2$ the knowledge of a second component would imply a knowledge of the third component because we know \vec{L} .
- > We expect the average of the angular momentum components squared to be $\langle L_x^2 \rangle = \langle L_y^2 \rangle = \langle L_z^2 \rangle$.

$$\langle L^2 \rangle = 3 \langle L_z^2 \rangle = \frac{3}{2\ell+1} \sum_{m_\ell=-\ell}^{\ell} m_\ell^2 \hbar^2 = \ell(\ell+1)\hbar^2$$

Hydrogen Orbitals



Thank You!!!