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“I think | can safely say that nobody understands

guantum mechanics.”
Ch. 6, “Probability and Uncertainty”

—-Richard Feynman
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The whole aim of this project is to convert ...

This Into This




« WAVE FUNCTION AND IT’S PHYSICAL
SIGNIFICANCE (v )

The physical significance or

interpretation of |y|%or Y yY* was
given by Max Born in 1927.

1. ¢ 2 or Yy* represents probability
per unit volume, of finding a
particle described by a wave
function at a perticular point

(X,y,z) at time ‘t’ in that volume.
2_P_

l.e.
ﬁi Born g




IMPORTANT CHARACTERISTICS OF A WAVE
FUNCTION ASSOCIATED WITH WAVE

1. Wave function should be normalised. i.e. it should satisfy the
following condition:

*© yYidx dy dz=1

2. Wave function should be finite. oo probability has no
meaning.

3. It should have a single value. (as at perticular point
probability can have only one value.




SCIHHRODINGER TIME INDEPENDIENT
EQUATION

Schrodinger used analogy of stationary waves on string for matter waves.

For a particle having position coordinates (x,y,z) and having wave function
Y equation of matter wave is

d2y 2 2 d? d2

—~ =u?V l/) 3 whereVZZ(d—+—‘|‘—)

dt? dx? dy? dz?
=Laplacian Operator

The solution of this equation is given as,
l/) — l/)()e_iwt , Wwhere w = 2rmv and u=vi
Double differentiating and substituting in above equation we get,
2
Vo + 2Ty =0
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On further simplification we get,

,  8m’m
V 1/J+T(E—V)IIJ=O

Where,

Planck’s constant

mass of particle

total energy of particle

=  potential energy of particle

<m3 =
I




Application of the Schrodinger Equation to the
Hydrogen Atom

= The approximation of the potential energy of the electron-
proton system is electrostatic:

82

V(r)=-
) dze,r

= Rewrite the three-dimensional time-independent
Schrodinger Equation.

_ B [ & 4 " 3 ol (7) + —F*ZEE (7)) = Ey(7)
2m \ I3 Ay 522 ) TN S ‘ B | |

» For Hydrogen-like atoms (He+ or Li*++)
= Replace e with Ze2 (Zis the atomic number).
= Use appropriate reduced mass .




Application of the Schrodinger Equation

» The potential (central force) Us) depends on the distance r
between the proton and electron.

Transform to spherical

(diies i polar coordinates

Ak (0, ) because of the radial
: X ¥ %

#=cos ! T— (Polar angle) Sym m etry-

= tan~! '}I;c I:.'\;.J:]I'I:Illl}'!:-]l}]l:'lg'tt.‘}

., Insert the Coulomb

. potential into the
____________ e transformed Schrodinger
(%) equation.

2
1_6[r36y/]+ 1 i [sinﬁaw]-t- : 8W+EE(E-V)W=O
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Application of the Schrodinger Equation

» The wave function @is a functionof r, 6, ¢ .
1.Equation is separable.
2.Solution may be a product of three functions.

w(r,0,9) =R(r) 1 (0)g(9)

» We can separate Equation into three separate differential
equations, each depending on one coordinate: r, 6, or @

11




Solution of the Schrodinger Equation for Hydrogen

» Substitute into Equation and separate the resulting equation
into three equations: R(r), A8), and g(®).
Separation of Variables
» The partial differential equations of R(r), A8), and g(p) are
B oR oy _, of o'y . .0%g

= = — 7:R
o o 0 R0 spr =N op

» Substitute them into main equation
) 2
_sin Qﬁ(rgf}R] 2#r251n29(E—V)—Sm9 %, [ - 5f] 10 g,;
R or\ or) n [ 00 00) go¢
» Multiply both sides by 2sin2 8/ Rfg

Jjg o [ 25R] Rg 0 [ of ] R 0°g 2u
A=l I & + sin@ = + E-V)Rfe =0
20 or) r’sin0 o0 00 ) r*sin’ 0 04* ﬁz( R

12



Solution of the Schrodinger Equation

4

Only rand @appear on the left side and only @ appears onthe
right side of Equation.

The R.H.S. of equation is function of @ .
The L.H.S. is function of r and 0.
This implies ONLY ONE THING

Each side needs to be equal to a constant for the equation to be
true.

Set the constant —m,2 equal to the right side of Equation

dzg 2 . h I .
—S=—m,g T azimuthal equation
d¢

It is convenient to choose a solution to be

LT
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Solution of the Schrodinger Equation

,» e™?satisfies equation for any value of m,.

» The solution be single valued in order to have a valid

solution for any @, which is
0 27wimy,

g(p)=g(g+27) —— ¢ =e
g(9=0)=g(p=2n)

» mpto be zero or an integer (positive or negative) for this
to be true.

» Set the left side of egn equal to —m,? and rearrange it.

m,?
lﬁ[rz 6R] Z,ur (F— ]— L ¢ [sin@g]
or sin 6’ ~ fsin0 o0 00

» Everything depends on ron the left side and @on the right
side of the equation.
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Solution of the Schrodinger Equation

» Set each side equal to constant £(£ + 1).

2
h* (4 ;L D}R 0 —--—-Radial equation
-——-Angular equation

---—-Angular equation

» Schrodinger equation has been separated into three ordinary
second-order differential equations each containing only one
variable.

15



Solution of the Radial Equation

» The radial equation is called the associated Laguerre
equation and the so/utions R that satisfy the appropriate

boundary conditions are called associated Laguerre
functions.

» Assume the ground state has £ = 0 and this requires =

0.
L= [rz dR] 2';‘(E—V)R -0
r dr dr
» The derivative of rzdR yields two terms.

dr
Write those terms and insert in equation

2 o2
d—§+ ng 2/; B -+ R=0
dr rdr h 4756‘07’
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Solution of the Radial Equation

» Try a solution R = 4e¢ 7%
Ais a normalized constant.
dy is a constant with the dimension of length.
Take derivatives of Rand insert them into Egn

| 2
12+22‘E’+ 2y62_2 1:0
ao h 47[50h ao r

» To satisfy this Egn for any ris for each of the two expressions
in parentheses to be zero.
Set the second parentheses equal to zero and solve for a,.

47:80712
e’
Set the first parentheses equal to zero and solve for £
hz

E=—2 .
d
Both equal to the Bonr resﬁlt?




Quantum Numbers

- The appropriate boundary conditions to and (7.11) leads

to the following restrictions on the quantum numbers ¥
and my:

« £=0,1,2,3,...
e my=-4,-€+1,...,-2,-1,0,1,2,.¢L.,{-1,¢
e |myl <¥and ¥ < 0.

- The predicted energy level is

18



Hydrogen Atom Radial Wave Functions

» First few radial wave functions R,

R, (r)

2

@y ="

(o)
tan / (Zag)

—r

rmy

r £

ay V3(2a,)"?

| i ¥ rs )
97 — 18— 4+ 9 |1/
{m,}w! Sl‘u’ﬁ( fty G £

(o %)
(ap)** BIVG "

1 4 2
{a“}sm 8130 ﬂuzg

» Subscripts on R specify the values of nand ¥.




Solution of the Angular and Azimuthal Equations

» The solutions for Azimuthal equation are g™# o g .

» Solutions to the angular and azimuthal equations are linked
because both have m,.

» Group these solutions together into functions.

Y(0,0)=f(0)g(o) ---- spherical harmonics

'

L

e L1 |
S0 0
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Normalized Spherical Harmonics

8 2006 Brooks/Cole - Thomson

F— L) sin f cos @ ¢~

2N 29

1 (15 !
P e e *+3idh
1) / Py sin“f e
&., }%(5 cos® B — B cos b))
L j2l . 20 i
+3.\/ - sin O(bcos™f — 1)e
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Normalized Spherical Harmonics

' Y; = ¢osd sing sing Yg=5c0539~3cusﬂ ;=(5c0529-1 Jsin@ cosg




Solution of the Angular and Azimuthal Equations

» The radial wave function R and the spherical

harmonics Y determine the probability density for the
various quantum states. The total wave function

Y(r, 0, ) depends on n, £, and m,. The wave function
becomes

Y ntm, (r,0,0) = Rng (F)ngf (0,9)

23




Quantum Numbers

The three quantum numbers:

°n Principal quantum number
o f Orbital angular momentum quantum number
o My Magnetic quantum number

The boundary conditions:

o n=1,2,3,4,... Integer

- £=0,1,2,3,...,n—1 Integer

o mpy=-, -€L+1,...,0,1,...,¢—-1,¢ Integer
The restrictions for quantum numbers:

> n>0

o ¥ <n

o /myl < ¥

24



Principal Quantum Number n

» It results from the solution of R(r) because R(/) includes the
potential energy U/.
The result for this quantized energy is

2 \? ,_
o B 1 :_&
" 2 \dmeyh) n*  n’

» The negative means the energy £indicates that the electron
and proton are bound together.

25



Orbital Angular Momentum Quantum Number {

» It is associated with the R(r) and A6 parts of the wave
function.

» Classically, the orbital angular momentum L[ =#xp with .
= MVorbital -

» Lis related to Lby 1 =.[e(e+1)h

» Inan £ = 0 state, [ = Jo()zr=0

It disagrees with Bohr’s semiclassical “planetary” model of
electrons orbiting a nucleus L = nh.

26




Orbital Angular Momentum Quantum Number {

» A certain energy level is degenerate with respect to £ when
the energy is independent of £.

» Use letter names for the various £ values.
o f = 0 1 2 3 4 5...
o Letter = s p d f g h...

Atomic states are referred to by their nand L.
» A state with =2 and £ = 1 is called a 2p state.
The boundary conditions require n > 4.

v

4

27




Magnetic Quantum Number

> The angle ® is a measure of the rotation about the z axis.

> The solution for g(®) specifies that /yis an integer and
related to the zcomponentof L. 1

L,=mh |
> The relationship of L, L,, ¥,
and myfor £ = 2. o) E— =y
> L=-Je(t+)h=+J6n is fixed
because L,is quantized. 1 e Aa——

me =1
— e L=yb(€ +1)h
. =\6%

my = ﬂ

> Only certain orientations ff
are possible and this is called
Space quantization.

(0

=T SR S

my = —1

B e My = —2

0200 DmgknTiole - Thomeen
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Magnetic Quantum Number

» Quantum mechanics allows j to be quantized along only
one direction in space. Because of the relation [2= [,2 + L/
+ [,2the knowledge of a second component would imply a
knowledge of the third component because we know [ .

> We expect the average of the angular momentum
components squared to be <Lx2>=<Ly2>= <LZ2> :

(L)=3(L%)= 2£3+ 1 i m,*h? = 4(¢ + D>

mf =

29




Hydrogen Orbitals

n=1 n=2 n=3

[=0 ‘ f

[ _J .
>~
& A




Thank You!!!
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