Wire frame modelling

1. A wire frame model consists of points and curves only.
2. A wire frame model consists of 2 tables the vertex table and edge table.
3. A wire frame model does not face information.
4. Example : Representing a cube defined by 8 vertices and 12 edges

Edge			
Edge Na	Srari herrex	End 3errex	
1	1	2	
2	2	3	
3	3	4	
4	4	1	
5	5	6	
6	6	7	
7	7	8	
8	8	5	
9	1	5	
10	2	6	
11	3	7	
12	4	8	

Advantages \& Dis-advantages of wire frame modelling

Curves plays important role in generating a wire frame modelling

Advantages:

1. Ease of creation.
2. Low level of hardware and software requirements.
3. Data storage requirement is low.

Dis-advantages:

1. It can very confusing to visualise.
example : A blind hole in a box may be look like a solid cylinder

A wireframe model of a solid object with a blind hole.

Classification of wire frame entities

Curves are classified as

1. Analytical curves:

- This types of curve can be represented by a simple mathematical equation such as circle or an line
- It has a fixed form \& cannot be modified to achieve a shape that violates the mathematical equations
- The analytical curves are :

1. line
2. arc
3. circle
4. ellipse
5. parabola
6. Hyperbola
2.Synthetic curves:

- An interpolated curve is drawn by interpolating the given data points and has a fixed form, dictated by the given data points.
- These curves have some limited flexibility in shape creation, dictated by the given data points. The synthetic curves are:

1. Hermite cubic spine or parametric cubic curve or cubic spline.
2. Bezier.
3. B- spline.

Curves representation methods

The mathematical representation of a curves can be classified as:

1. Non- parametric

- Explicit
- Implicit

2. Parametric

Non- Parametric Representation:

a) The explicit non- parametric equation is given by :

$$
Y=C_{1}+C_{2} X+C_{3} X^{2}+C_{4} X^{3}
$$

- In this equation, there is a unique single value of the dependent variable for each value of the independent variable.
b) The implicit non-parametric equation is:
$\left(X-X_{c}\right)^{2}+\left(Y-Y_{C}\right)^{2}=r^{2}$
- In this equation, no difference is made between the dependent \& the independent variable.
Limitations of non-parametric representation are:

1. Explicit non- parametric representation is based on one - to- mapping.
2. This cannot be used for representation of closed curves such as circle or multi- valued curves such as parabola.
3. If the gradient or slope of the curve at a point is vertical , its value is infinity, which cannot be incorporated in the computer programming.

Representation of curves

Types of Curve Equations

- Explicit (non-parametric) $Y=f(X), Z=g(X)$
- Implicit (non-parametric) $f(X, Y, Z)=0$
- Parametric
$\mathrm{X}=\mathrm{X}(\mathrm{t}), \mathrm{Y}=\mathrm{Y}(\mathrm{t}), \mathrm{Z}=\mathrm{Z}(\mathrm{t})$

Analytic Curves vs. Synthetic Curves

- Analytic Curves are points, lines, arcs and circles, fillets and chamfers, and conics (ellipses, parabolas, and hyperbolas)
- Synthetic curves include various types of splines (cubic spline, B-spline, Beta-spline) and Bezier curves.

Parametric representation of Analytic curves

1. Line

A line is defining by connecting two points $P_{1} \& P_{2}$. A parameter u is defined such that it has the values $0 \& 1$ at $\mathrm{P}_{1} \& \mathrm{P}_{2}$ respective ${ }^{1 .}$ the equation of line is given by:

$$
P=P_{1}+u\left(P_{1}-P_{2}\right) \quad 0 \leq u \leq 1
$$

The length of the line is given by :
L
the unit vector is given by: $n=P_{2}-P_{1} / 2$
The equation of the line is given by:

$$
P=P_{1}+u\left(P_{2}-P_{1}\right) \quad 0 \leq u \leq 1
$$

The length of the line is given by:

$$
L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The unit vector is given by:

Line connecting two points.

In matrix form,

$$
\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}=\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right\}+u\left[\left\{\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right\}-\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
z_{2}
\end{array}\right\}\right]
$$

2.Circle

- A circle with centre $\left(X_{c}, Y_{c}\right) \&$ radius r has an equation as follows:

$$
\left(X-X_{c}\right)^{2}+\left(Y-Y_{c}\right)^{2}=r^{2}
$$

- If the centre is the origin, the above equation is simplified to:

$$
X^{2}+Y^{2}=r^{2}
$$

- From the above equation referred to as the non- parametric (implicit) form of the circle.
Parametric form of circle is:

$$
\begin{aligned}
& X=x_{c}+r \cos u \\
& Y=y_{c}+r \sin u \quad 0 \leq u \leq 1 \\
& Z=Z_{c}
\end{aligned}
$$

Circle defined by centre and radius.

Example: A Circle of radius R

- Implicit:

$$
x^{2}+y^{2}+z^{2}-R^{2}=0 \& z=0
$$

- Parametric:

$$
\begin{aligned}
& x(\theta)=R \cos (\theta) \\
& y(\theta)=R \sin (\theta) \\
& z(\theta)=0
\end{aligned}
$$

Interpolating and approximating curve:

Convex hull
The convex hull property ensures that a parametric curve will never pass outside of the convex hull formed by the four control vertices.

Interpolating spline
Approximating spline

Basic Concepts :

The order of continuity is a term usually used to measure the degree of continuous derivatives $\left(\mathrm{C}^{0}, \mathrm{C}^{1}, \mathrm{C}^{2}\right)$.

$C 2$

C 0 - Zero-order parametric continuity - the two curves sections must have the same coordinate position at the boundary point.
\mathbf{C}^{1} - First-order parametric continuity - tangent lines of the coordinate functions for two successive curve sections are equal at their joining point.
$\mathbf{C}^{\mathbf{2}}$ - second-order parametric continuity - both the first and second parametric derivativesof the two curve sections are the same at the intersection,

(a) Zero-order continuity

(b) First-order continuity

Centre of curvature
(c) Second-order continuity

Continuity of curves.

Curvature continuity

c^{0} Continuity :

- Consider The end Point of curve $f(b) \&$ the start point of the curve $g(m)$.
- If $f(b) \& g(m)$ are equal as shown, we shall say curves are ${ }_{c}{ }^{0}$ continuous at $f(b)=g(m)$.
c^{1} Continuity: Two curves are ${ }^{1}$ Continuous at the joining point if the first derivative does not change when crossing one to the other.
$\mathbf{c}^{\mathbf{2}}$ Continuity: Two curves are ${ }_{c}{ }^{2}$ Continuous at the joining point if in addition to the first derivative, the second derivative is also same when one curve is crossed to the other.

(a) Zero-order continuity

(b) First-order continuity

Centre of curvature
(c) Second-order continuity

Continuity of curves.

