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We know that thickness of the vessel,

  t = 
. 1.5 3000

4 . 4 90 0.75t

p d ×=
σ η × ×

 = 16.7 say 18 mm Ans.

7.8 Change in Dimensions of a Thin Spherical Shell due to an Internal
Pressure

Consider a thin spherical shell subjected to an internal pressure as shown in Fig. 7.5.

Let     d  =  Diameter of the spherical shell,
     t  = Thickness of the spherical shell,

 p =  Intensity of internal pressure,
   E  =  Young’s modulus for the material of the spherical shell, and

μ  = Poisson’s ratio.
Increase in diameter of the spherical shell due to an internal pressure is given by,

δd =
2.

4 .

p d

t E
 (1 – μ) ...(i)

and increase in volume of the spherical shell due to an internal pressure is given by,

δV = Final volume – Original volume = 
6

π
 (d + δd)3 – 

6

π
 ×  d3

=
6

π
 ( 3 d 2  ×  δ d ) ...(Neglecting higher terms)

Substituting the value of δd from equation (i), we have
2 2 43 .

(1 – ) (1 – )
6 4 . 8 .

d p d p d
V

t E t E

⎡ ⎤π πδ = μ = μ⎢ ⎥
⎣ ⎦

Example 7.6. A seamless spherical shell, 900 mm in diameter and 10 mm thick is being filled
with a fluid under pressure until its volume increases by 150 × 103 mm3. Calculate the pressure
exerted by the fluid on the shell, taking modulus of elasticity for the material of the shell as
200 kN/mm2 and Poisson’s ratio as 0.3.

Solution. Given : d = 900 mm ; t = 10 mm ; δV = 150 × 103 mm3 ; E = 200 kN/mm2

= 200 × 103 N/mm2 ; μ = 0.3

Let p = Pressure exerted by the fluid on the shell.

We know that the increase in volume of the spherical shell (δV),

150 × 103 =
4

8

p d

t E

π
 (1 – μ) = 

4

3

(900)

8 10 200 10

π
× × ×

p
 (1 – 0.3) = 90 190 p

∴ p = 150 × 103/90 190 = 1.66 N/mm2 Ans.

7.9 Thick Cylindrical Shells Subjected to an Internal Pressure
When a cylindrical shell of a pressure vessel, hydraulic cylinder, gunbarrel and a pipe is subjected

to a very high internal fluid pressure, then the walls of the cylinder must be made extremely heavy or
thick.

In thin cylindrical shells, we have assumed that the tensile stresses are uniformly distributed
over the section of the walls. But in the case of thick wall cylinders as shown in Fig. 7.6 (a), the stress
over the section of the walls cannot be assumed to be uniformly distributed. They develop both
tangential and radial stresses with values which are dependent upon the radius of the element under
consideration. The distribution of stress in a thick cylindrical shell is shown in Fig. 7.6 (b) and (c). We
see that the tangential stress is maximum at the inner surface and minimum at the outer surface of the
shell. The radial stress is maximum at the inner surface and zero at the outer surface of the shell.
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In the design of thick cylindrical shells, the following equations are mostly used:

1. Lame’s equation; 2. Birnie’s equation; 3. Clavarino’s equation; and 4. Barlow’s equation.

The use of these equations depends upon the type of material used and the end construction.

Fig. 7.6. Stress distribution in thick cylindrical shells subjected to internal pressure.

Let ro = Outer radius of cylindrical shell,

ri = Inner radius of cylindrical shell,

t = Thickness of cylindrical shell = ro – ri,

p = Intensity of internal pressure,

μ = Poisson’s ratio,

σt = Tangential stress, and

σr = Radial stress.

All the above mentioned equations are now discussed, in detail, as below:

1. Lame’s equation. Assuming that the longitudinal fibres of the cylindrical shell are equally
strained, Lame has shown that the tangential stress at any radius x is,

2 2 2 2

2 2 2 2 2

( ) – ( ) ( ) ( ) –

( ) – ( ) ( ) – ( )
i i o o i o i o

t
o i o i

p r p r r r p p

r r x r r

⎡ ⎤σ = + ⎢ ⎥
⎣ ⎦

While designing a tanker, the pressure added by movement of the vehicle also should be
considered.
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and radial stress at any radius x,

                                          

2 2 2 2

2 2 2 2 2

( ) – ( ) ( ) ( ) –
–

( ) – ( ) ( ) – ( )
i i o o i o i o

r
o i o i

p r p r r r p p

r r x r r

⎡ ⎤σ = ⎢ ⎥
⎣ ⎦

Since we are concerned with the internal pressure ( pi = p) only, therefore substituting the value
of external pressure, po = 0.

∴ Tangential stress at any radius x,

              
2 2

2 2 2

( ) ( )
1

( ) – ( )
i o

t
o i

p r r

r r x

⎡ ⎤
σ = +⎢ ⎥

⎣ ⎦
...(i)

and radial stress at any radius x,

              
2 2

2 2 2

( ) ( )
1

( ) – ( )

⎡ ⎤
σ = −⎢ ⎥

⎣ ⎦
i o

r
o i

p r r

r r x
...(ii)

We see that the tangential stress is always a tensile stress whereas the radial stress is a compressive
stress. We know that the tangential stress is maximum at the inner surface of the shell (i.e. when
x  =  r i)  and it is minimum at the outer surface of the shell (i.e. when x = ro). Substituting the value of
x = ri and x = ro in equation (i), we find that the *maximum tangential stress at the inner surface of the
shell,

              

2 2

( ) 2 2

[( ) ( ) ]

( ) – ( )
o i

t max
o i

p r r

r r

+
σ =

and minimum tangential stress at the outer surface of the shell,

               

2

( ) 2 2

2 ( )

( ) – ( )
i

t min
o i

p r

r r
σ =

We also know that the radial stress is maximum at the inner surface of the shell and zero at the
outer surface of the shell. Substituting the value of x = ri and x = ro in equation (ii), we find that
maximum radial stress at the inner surface of the shell,

    σr(max) = – p (compressive)

and minimum radial stress at the outer surface of the shell,

σr(min) = 0

In designing a thick cylindrical shell of brittle material (e.g. cast iron, hard steel and cast
aluminium) with closed or open ends and in accordance with the maximum normal stress theory
failure, the tangential stress induced in the cylinder wall,

σt = σt(max) = 
2 2

2 2

[( ) ( ) ]

( ) – ( )
o i

o i

p r r

r r

+

Since ro = ri + t, therefore substituting this value of ro in the above expression, we get
2 2

2 2

[( ) ( ) ]

( ) – ( )
i i

t
i i

p r t r

r t r

+ +
σ =

+
σt (ri + t)2 – σt (ri)

2 = p (ri + t)2 + p (ri)
2

(ri + t)2 (σt – p) = (ri)
2 (σt + p)

2

2

( )

–( )
i t

ti

r t p

pr

+ σ +
=

σ

* The maximum tangential stress is always greater than the internal pressure acting on the shell.
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–
i t

i t

r t p

r p

+ σ +
=

σ or 1
–

t

i t

pt

r p

σ +
+ =

σ

∴ – 1
–

t

i t

pt

r p

σ +
=

σ
or – 1

–
t

i
t

p
t r

p

⎡ ⎤σ +
= ⎢ ⎥σ⎢ ⎥⎣ ⎦

...(iii)

The value of σt for brittle materials may be taken as 0.125 times the ultimate tensile
strength (σu).

We have discussed above the design of a thick cylindrical shell of brittle materials. In case of
cylinders made of ductile material, Lame’s equation is modified according to maximum shear stress
theory.

According to this theory, the maximum shear stress at any point in a strained body is equal to
one-half the algebraic difference of the maximum and minimum principal stresses at that point. We
know that for a thick cylindrical shell,

Maximum principal stress at the inner surface,

σt (max) =
2 2

2 2

[( ) ( ) ]

( ) – ( )
o i

o i

p r r

r r

+

and minimum principal stress at the outer surface,

σt(min) = – p
∴ Maximum shear stress,

2 2

2 2
( ) ( )

[( ) ( ) ]
– (– )

– ( ) – ( )

2 2

o i

t max t min o i
max

p r r
p

r r

+
σ σ

τ = τ = =
2 2 2 2 2

2 2 2 2

[( ) ( ) ] [( ) – ( ) ] 2 ( )

2[( ) – ( ) ] 2[( ) – ( ) ]
o i o i o

o i o i

p r r p r r p r

r r r r

+ +
= =

2

2 2

( )

( ) – ( )
i

i i

p r t

r t r

+
=

+ ... (Q ro = ri + t)

or τ ( r i  + t)2 – τ(ri)
2 = p(ri + t)2

(ri + t)2 (τ  – p) = τ(ri)
2

2

2

( )

–( )
i

i

r t

pr

+ τ=
τ

–
i

i

r t

r p

+ τ=
τ or 1

–i

t

r p

τ+ =
τ

∴ – 1
–i

t

r p

τ=
τ

or – 1
–it r

p

⎡ ⎤τ= ⎢ ⎥τ⎣ ⎦
...(iv)

The value of shear stress (τ) is usually taken as one-half the tensile stress (σt). Therefore the
above expression may be written as

– 1
– 2

t
i

t

t r
p

⎡ ⎤σ
= ⎢ ⎥σ⎢ ⎥⎣ ⎦

...(v)

From the above expression, we see that if the internal pressure ( p )  is equal to or greater than
the allowable working stress (σt or τ), then no thickness of the cylinder wall will prevent failure.
Thus, it is impossible to design a cylinder to withstand fluid pressure greater than the allowable
working stress for a given material. This difficulty is overcome by using compound cylinders (See
Art. 7.10).
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2. Birnie’s equation. In

case of open-end cylinders (such
as pump cylinders, rams, gun
barrels etc.) made of ductile
material (i.e. low carbon steel,
brass, bronze, and aluminium
alloys), the allowable stresses
cannot be determined by means of
maximum-stress theory of failure.
In such cases, the maximum-strain
theory is used. According to this
theory, the failure occurs when the
strain reaches a limiting value and
Birnie’s equation for the wall
thickness of a cylinder is

        
(1 – )

– 1
– (1 )

t
i

t

p
t r

p

⎡ ⎤σ + μ
= ⎢ ⎥σ + μ⎢ ⎥⎣ ⎦
The value of σt may be taken

as 0.8 times the yield point stress
(σy).

3. Clavarino’s equation.
This equation is also based on the
maximum-strain theory of failure,
but it is applied to closed-end cyl-
inders (or cylinders fitted with
heads) made of ductile material.
According to this equation, the
thickness of a cylinder,

(1 – 2 )
– 1

– (1 )
t

i
t

p
t r

p

⎡ ⎤σ + μ
= ⎢ ⎥σ + μ⎢ ⎥⎣ ⎦

In this case also, the value of σt may be taken as 0.8 σy.

4. Barlow’s equation. This equation is generally used for high pressure oil and gas pipes.
According to this equation, the thickness of a cylinder,

t = p.ro / σt

For ductile materials, σt = 0.8 σy and for brittle materials σt = 0.125 σu, where σu is the ultimate
stress.

Example 7.7. A cast iron cylinder of internal diameter 200 mm and thickness 50 mm is
subjected to a pressure of 5 N/mm2. Calculate the tangential and radial stresses at the inner, middle
(radius = 125 mm) and outer surfaces.

Solution. Given : di = 200 mm or ri = 100 mm ; t = 50 mm ; p = 5 N/mm2

We know that outer radius of the cylinder,

ro = ri + t = 100 + 50 = 150 mm

Oil is frequently transported by ships called tankers. The larger tank-
ers, such as this Acrco Alaska oil transporter, are known as super-
tankers. They can be hundreds of metres long.
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Tangential stresses at the inner, middle and outer surfaces
We know that the tangential stress at any radius x,

                              σt =
2 2

2 2 2

( ) ( )
1

( ) – ( )
i o

o i

p r r

r r x

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∴ Tangential stress at the inner surface (i.e. when x = ri = 100 mm),

σt(inner) =
2 2 2 2

2 2 2 2

[( ) ( ) ] 5 [(150) (100) ]

( ) – ( ) (150) – (100)
o i

o i

p r r

r r

+ +=  = 13 N/mm2 = 13 MPa Ans.

Tangential stress at the middle surface (i.e. when x = 125 mm),

σt(middle) =
2 2

2 2 2

5 (100) (150)
1

(150) – (100) (125)

⎡ ⎤
+⎢ ⎥

⎣ ⎦
 = 9.76 N/mm2 = 9.76 MPa Ans.

and tangential stress at the outer surface (i.e. when x = ro = 150 mm),

σt(outer) =
2 2

2 2 2 2

2 ( ) 2 5 (100)

( ) – ( ) (150) – (100)
i

o i

p r

r r

×=  = 8 N/mm2 = 8 MPa Ans.

Radial stresses at the inner, middle and outer surfaces

We know that the radial stress at any radius x,

σr =
2 2

2 2 2

( ) ( )
1 –

( ) – ( )
i o

o i

p r r

r r x

⎡ ⎤
⎢ ⎥
⎣ ⎦

∴Radial stress at the inner surface (i.e. when x = ri = 100 mm),

σr(inner) = – p = – 5 N/mm2 = 5 MPa (compressive) Ans.

Radial stress at the middle surface (i.e. when x = 125 mm)

σr(middle) =
2 2

2 2 2

5 (100) (150)
1 –

(150) – (100) (125)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 = – 1.76 N/mm2 = – 1.76 MPa

= 1.76 MPa (compressive) Ans.

and radial stress at the outer surface (i.e. when x = ro = 150 mm),

σr(outer) = 0 Ans.

Example 7.8. A hydraulic press has a maximum
capacity of 1000 kN. The piston diameter is 250 mm.
Calculate the wall thickness if the cylinder is made of
material for which the permissible strength may be
taken as 80 MPa. This material may be assumed as a
brittle material.

Solution. Given : W = 1000 kN = 1000 × 103 N ;
d = 250 mm ; σt = 80 MPa = 80 N/mm2

First of all, let us find the pressure inside the
cylinder (p). We know that load on the hydraulic press
(W),

1000 × 103 =
4

π
 × d 2  × p = 

4

π
 (250)2 p = 49.1 × 103p

∴ p = 1000 × 103/49.1 × 103 = 20.37 N/mm2

Let ri = Inside radius of the cylinder = d / 2 = 125 mm

Hydraulic Press
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We know that wall thickness of the cylinder,

80 20.37
– 1 125 – 1 mm

– 80 – 20.37
t

i
t

p
t r

p

⎡ ⎤ ⎡ ⎤σ + += =⎢ ⎥ ⎢ ⎥σ⎢ ⎥ ⎣ ⎦⎣ ⎦
= 125 (1.297 – 1) = 37 mm Ans.

Example 7.9. A closed-ended cast iron cylinder of 200 mm inside diameter is to carry an
internal pressure of 10 N/mm2 with a permissible stress of 18 MPa. Determine the wall thickness by
means of Lame’s and the maximum shear stress equations. What result would you use? Give reason
for your conclusion.

Solution. Given : di = 200 mm or ri = 100 mm ; p = 10 N/mm2 ; σt = 18 MPa = 18 N/mm2

According to Lame’s equation, wall thickness of a cylinder,

80 10
– 1 100 – 1 87 mm

– 80 – 10
t

i
t

p
t r

p

⎡ ⎤ ⎡ ⎤σ + += = =⎢ ⎥ ⎢ ⎥σ⎢ ⎥ ⎣ ⎦⎣ ⎦

According to maximum shear stress equation, wall thickness of a cylinder,

t = – 1
–ir p

⎡ ⎤τ
⎢ ⎥τ⎣ ⎦

We have discussed in Art. 7.9 [equation (iv)], that the shear stress (τ) is usually taken one-half
the tensile stress (σt). In the present case, τ = σt / 2 = 18/2 = 9 N/mm2. Since τ is less than the internal
pressure ( p = 10 N/mm2), therefore the expression under the square root will be negative. Thus no
thickness can prevent failure of the cylinder. Hence it is impossible to design a cylinder to withstand
fluid pressure greater than the allowable working stress for the given material. This difficulty is
overcome by using compound cylinders as discussed in Art. 7.10.

Thus, we shall use a cylinder of wall thickness, t = 87 mm Ans.
Example 7.10. The cylinder of a portable hydraulic riveter is 220 mm in diameter. The pressure

of the fluid is 14 N/mm2 by gauge. Determine suitable thickness of the cylinder wall assuming that
the maximum permissible tensile stress is not to exceed 105 MPa.

Solution. Given : di = 220 mm or ri = 110 mm ; p = 14 N/mm2 ; σt = 105 MPa = 105 N/mm2

Since the pressure of the fluid is high, therefore thick cylinder equation is used.

Assuming the material of the cylinder as steel, the thickness of the cylinder wall (t) may be
obtained by using Birnie’s equation. We know that

t =
(1 – )

– 1
– (1 )

t
i

t

p
r

p

⎡ ⎤σ + μ
⎢ ⎥σ + μ⎢ ⎥⎣ ⎦

105 (1 – 0.3) 14
110 – 1 16.5 mm

105 – (1 0.3) 14

⎡ ⎤+= =⎢ ⎥+⎣ ⎦
 Ans.

...(Taking Poisson’s ratio for steel, μ = 0.3)

Example 7.11. The hydraulic cylinder 400 mm bore operates at a maximum pressure of
5 N/mm2. The piston rod is connected to the load and the cylinder to the frame through hinged joints.
Design: 1. cylinder, 2. piston rod, 3. hinge pin, and 4. flat end cover.

The allowable tensile stress for cast steel cylinder and end cover is 80 MPa and for piston rod
is 60 MPa.

Draw the hydraulic cylinder with piston, piston rod, end cover and O-ring.

Solution. Given : di = 400 mm or ri = 200 mm ; p = 5 N/mm2 ; σt = 80 MPa = 80 N/mm2 ;

σtp = 60 MPa = 60 N/mm2
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1.  Design of cylinder
Let do = Outer diameter of the cylinder.
We know that thickness of cylinder,

80 5
– 1 200 – 1 mm

– 80 – 5
t

i
t

p
t r

p

⎡ ⎤ ⎡ ⎤σ + += =⎢ ⎥ ⎢ ⎥σ⎢ ⎥ ⎣ ⎦⎣ ⎦
= 200 (1.06 – 1) = 12 mm Ans.

∴ Outer diameter of the cylinder,
do = di + 2t = 400 + 2 × 12 = 424 mm Ans.

2.  Design of piston rod
Let dp = Diameter of the piston rod.
We know that the force acting on the piston rod,

F =
4

π
 (di)

2 p = 
4

π
 (400)2 5 = 628 400 N ...(i)

We also know that the force acting on the piston rod,

F =
4

π
 (di)

2 σtp = 
4

π
 (dp)2 60 = 47.13 (dp)

2 N ...(ii)

From equations (i) and (ii), we have
(dp)2 = 628 400/47.13 = 13 333.33   or   dp = 115.5 say 116 mm Ans.

3. Design of the hinge pin
Let dh = Diameter of the hinge pin of the piston rod.
Since the load on the pin is equal to the force acting on the piston rod, and the hinge pin is in

double shear, therefore

F = 2 × 
4

π
 (dh)

2 τ

628 400 = 2 × 
4

π
 (dh)

2 45 = 70.7 (dh)2 ...(Taking τ = 45 N/mm2)

∴ (dh)
2 = 628 400 / 70.7 = 8888.3   or   dh = 94.3 say 95 mm Ans.

When the cover is hinged to the cylinder, we can use two hinge pins only diametrically opposite
to each other. Thus the diameter of the hinge pins for cover,

dhc =
95

2 2
hd

=  = 47.5 mm Ans.

Fig. 7.7
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4. Design of the flat end cover

Let tc = Thickness of the end cover.

We know that force on the end cover,

F = di × tc × σt

628 400 = 400 × tc × 80 = 32 × 103 tc
∴ tc = 628 400 / 32 × 103 = 19.64 say 20 mm Ans.
The hydraulic cylinder with piston, piston rod, end cover and O-ring is shown in Fig. 7.7.

7.10 Compound Cylindrical Shells
According to Lame’s equation, the thickness of a cylindrical shell is given by

t = – 1
–

t
i

t

p
r

p

⎛ ⎞σ +
⎜ ⎟⎜ ⎟σ⎝ ⎠

From this equation, we see that if the internal pressure
(p) acting on the shell is equal to or greater than the allowable
working stress (σt) for the material of the shell, then no thickness
of the shell will prevent failure. Thus it is impossible to design
a cylinder to withstand internal pressure equal to or greater
than the allowable working stress.

This difficulty is overcome by inducing an initial
compressive stress on the wall of the cylindrical shell. This
may be done by the following two methods:

1. By using compound cylindrical shells, and

2. By using the theory of plasticity.

In a compound cylindrical shell, as shown in Fig. 7.8,
the outer cylinder (having inside diameter smaller than the
outside diameter of the inner cylinder) is shrunk fit over the inner cylinder by heating and cooling. On
cooling, the contact pressure is developed at the junction of the two cylinders, which induces
compressive tangential stress in the material of the inner cylinder and tensile tangential stress in the
material of the outer cylinder. When the cylinder is loaded, the compressive stresses are first relieved
and then tensile stresses are induced. Thus, a compound cylinder is effective in resisting higher
internal pressure than a single cylinder with the same overall dimensions. The principle of compound
cylinder is used in the design of gun tubes.

In the theory of plasticity, a temporary high internal pressure is applied till the plastic stage is
reached near the inside of the cylinder wall. This results in a residual compressive stress upon the
removal of the internal pressure, thereby making the cylinder more effective to withstand a higher
internal pressure.

7.11 Stresses in Compound Cylindrical Shells
Fig. 7.9 (a) shows a compound cylindrical shell assembled with a shrink fit. We have discussed

in the previous article that when the outer cylinder is shrunk fit over the inner cylinder, a contact
pressure ( p )  is developed at junction of the two cylinders (i.e. at radius r2 ) as shown in Fig. 7.9 (b)
and (c). The stresses resulting from this pressure may be easily determined by using Lame’s equation.

According to this equation (See Art. 7.9), the tangential stress at any radius x is

σt =
2 2 2 2

2 2 2 2 2

( ) – ( ) ( ) ( ) –

( ) – ( ) ( ) – ( )
i i o o i o i o

o i o i

p r p r r r p p

r r x r r

⎡ ⎤+ ⎢ ⎥
⎣ ⎦

...(i)

Fig. 7.8. Compound cylindrical shell.


