6.5. DIMENSIONAL ANALYSIS APPLIED TO FORCED CONVECTION HEAT TRANSFER

Let us assume that the heat transfer coefficient in a fully developed forced convection in a tube is a function of the following variables:

$$h = f(\rho, D, V, \mu, c_p, k) \qquad \dots(i)$$

or,
$$f_1(h, \rho, D, V, \mu, c_p, k)$$
 ...(*ii*)

The physical quantities with their dimensions are as under:

S.No.	Variables	Symbols	Dimensions
1	Heat transfer coefficient	h	$MT^{-3} \theta^{-1}$
2	Fluid density	ρ	ML^{-3}
3	Tube diameter	D	L
4	Fluid velocity	V	LT^{-1}
5	Fluid viscosity	μ	ML^{-1} T^{-1}
6	Specific heat	C_p	$L^2 T^{-2} \theta^{-1}$
7	Thermal conductivity	$\stackrel{r}{k}$	$MLT^{-3} \theta^{-1}$

Total number of variables, n = 7

Fundamental dimensions in the problem are M, L, T, θ and hence m = 4

Number of dimensionless π -terms = (n - m) = 7 - 4 = 3

The eqn. (ii) may be written as:

$$f_1(\pi_1, \pi_2, \pi_3) = 0$$

We choose h, ρ , D, V as the core group (repeating variables) with unknown exponents. The groups to be formed are now represented as the following π groups.

$$\pi_{1} = h^{a_{1}} \cdot \rho^{b_{1}} \cdot D^{c_{1}} \cdot V^{d_{1}} \cdot \mu$$

$$\pi_{2} = h^{a_{2}} \cdot \rho^{b_{2}} \cdot D^{c_{2}} \cdot V^{d_{2}} \cdot c_{p}$$

$$\pi_{3} = h^{a_{3}} \cdot \rho^{b_{3}} \cdot D^{c_{3}} \cdot V^{d_{3}} \cdot k$$

 π_1 -term:

$$M^{0}L^{0}T^{0} = (MT^{-3}\theta^{-1})^{a_{1}} \cdot (ML^{-3})^{b_{1}} \cdot (L)^{c_{1}} \cdot (LT^{-1})^{d_{1}} \cdot (ML^{-1}T^{-1})$$

Equating the exponents of M, L, T and θ respectively, we get

For M:
$$0 = a_1 + b_1 + 1$$

For L: $0 = -3b_1 + c_1 + d_1 - 1$
For T: $0 = -3a_1 - d_1 - 1$

For
$$\theta$$
: $0 = -a_1$

Solving the above equations, we have

$$a_1 = 0, b_1 = -1, c_1 = -1, d_1 = -1$$

$$\therefore \qquad \pi_1 = \rho^{-1} \cdot D^{-1} \cdot V^{-1} \cdot \mu$$
or,
$$\pi_1 = \frac{\mu}{\rho DV}$$

 π ,-term:

$$M^0L^0T^0=(MT^{-3}\,\theta^{-1})^{a_2}\cdot(ML^{-3})^{b_2}\cdot(L)^{c_2}\cdot(LT^{-1})^{d_2}\cdot(L^2\,T^{-2}\,\theta^{-1})$$
 For M :
$$0=a_2+b_2$$
 For L :
$$0=-3b_2+c_2+d_2+2$$

For T:
$$0 = -3a_2 - d_2 - 2$$

For
$$\theta$$
: $0 = -a_2 - 1$

Solving the above equations, we have

$$a_2 = -1$$
, $b_2 = 1$, $c_2 = 0$, $d_2 = 1$

$$\therefore \qquad \qquad \pi_2 = h^{-1} \cdot \rho \cdot V \cdot c_p$$

or
$$\pi_2 = \frac{c_p \, \rho \, V}{h}$$

Since dimensions of h and $\frac{k}{D}$ are the same, hence

$$\pi_2 = \frac{c_p \, \rho VD}{k}$$

π_3 -term:

$$\pi_3 = (MT^{-3} \theta^{-1})^{a_3} \cdot (ML^{-3})^{b_3} \cdot (L)^{c_3} \cdot (LT^{-1})^{d_3} \cdot (MLT^{-3} \theta^{-1})$$

Equating the exponents of M, L, T and θ respectively, we get

For M:
$$0 = a_3 - 3b_3 + 1$$

For L:
$$0 = -3b_3 + c_3 + d_3 + 1$$

For T:
$$0 = -3a_3 - d_3 - 3$$

For
$$\theta$$
: $0 = -a_3 - 1$

Solving the above equations, we get

$$a_3 = -1$$
, $b_3 = 0$, $c_3 = -1$, $d_3 = 0$

$$\therefore \qquad \qquad \pi_3 = h^{-1} \cdot D^{-1} \cdot k$$

or
$$\pi_3 = \frac{k}{hD}$$

According to π -theorem, $\pi_3 = \phi (\pi_1, \pi_2)$

$$\therefore \frac{k}{hD} = C \left[\frac{\mu}{\rho DV} \right]^{m'} \left[\frac{c_p \rho DV}{k} \right]^{n'}$$

where m' and n' are constants.

If m' > n', then

or

$$\frac{k}{hD} = C \left[\frac{\mu}{\rho \ DV} \right]^{n'} \left[\frac{c_p \rho DV}{k} \right]^{n'} \left[\frac{\mu}{\rho \ DV} \right]^{m' - n'}$$

$$= C \left[\frac{\mu}{\rho \ DV} \right]^{m' - n'} \left[\frac{\mu}{\rho \ DV} \cdot \frac{c_p \rho DV}{k} \right]^{n'}$$

$$= C \left[\frac{\mu}{\rho \ DV} \right]^{m' - n'} \left[\frac{\mu c_p}{k} \right]^{n'}$$

$$\frac{hD}{k} = C \left[\frac{\rho DV}{\mu} \right]^{m} \left[\frac{\mu c_p}{k} \right]^{n}$$

or
$$Nu = C (Re)^m (Pr)^n \qquad ...(6.8)$$

where C, m and n are constants and evaluated experimentally

where
$$Nu$$
 = Nusselt number = $\frac{hD}{k}$

$$Re = \text{Reynolds number} = \frac{\rho DV}{\mu}$$

$$Pr = \text{Prandtl number} = \frac{\mu c_p}{k}$$

It is worth noting that if V, m, ρ , c_p were chosen as the core group (repeating variables), then the analysis would have yielded the following non-dimensional groups:

$$Re = \frac{\rho \ VD}{\mu}$$
; $Pr = \frac{\mu c_p}{k}$; $St = \frac{h}{\rho \ Vc_p}$ (where, $St = \text{Stanton number}$)

So, another form of correlating heat transfer data is

$$St = \phi (Re, Pr) \qquad \dots (6.9)$$

6.6. DIMENSIONAL ANALYSIS APPLIED TO NATURAL OR FREE **CONVECTION HEAT TRANSFER**

The heat transfer coefficient in case of natural or free convection, like forced convection heat transfer coefficient, depends upon the variables V, ρ , k, μ , c_p and L or D. Since the fluid circulation in free convection is owing to difference in density between the various fluid layers due to temperature gradient and not by external agency, therefore, velocity V is no longer an independent variable but depends upon the following factors:

- (i) Δt i.e., the difference of temperatures between the heated surface and the undisturbed fluid.
- (ii) β i.e., coefficient of volume expansion of the fluid.
- (iii) g i.e., acceleration due to gravity.
 - $(\beta g \Delta t)$ is considered as one physical factor.)

Thus heat transfer coefficient 'h' may be expressed as follows:

$$h = f(\rho, L, \mu, c_p, k, \beta g \Delta t) \qquad ...(i)$$

$$f_1(\rho, L, \mu, k, h, c_p, \beta g \Delta t) \qquad ...(ii)$$

[The parameter $(\beta g \Delta t)$ represents the buoyant force and has the dimensions of LT^{-2} .]

Total number of variables, n = 7

Fundamental dimensions in the problem are M, L, T, θ and hence m = 4

Number of dimensionless π -terms = (n - m) = 7 - 4 = 3

The equation (ii) may be written as:

$$f_1(\pi_1, \pi_2, \pi_3) = 3$$

We choose ρ , L, μ and k as the core group (repeating variables) with unknown exponents. The groups to be formed are now represented as the following π groups.

$$\pi_{1} = \rho^{a_{1}} \cdot L^{b_{1}} \cdot \mu^{c_{1}} \cdot k^{d_{1}} \cdot h$$

$$\pi_{2} = \rho^{a_{2}} \cdot L^{b_{2}} \cdot \mu^{c_{2}} \cdot k^{d_{2}} \cdot c_{p}$$

$$\pi_{3} = \rho^{a_{3}} \cdot L^{b_{3}} \cdot \mu^{c_{3}} \cdot k^{d_{3}} \cdot \beta g \Delta t$$

$$\boldsymbol{\pi_1\text{-term:}} \\ M^0L^0T^0\ \theta^0 = (ML^{-3})^{a_1}\cdot (L)^{b_1}\cdot (ML^{-1}\ T^{-1})^{c_1}\cdot (MLT^{-3}\ \theta^{-1})^{d_1}\cdot (ML^{-3}\ \theta^{-1})$$

Equating the exponents of M, L, T and θ respectively, we get

For M:
$$0 = a_1 + c_1 + d_1 + 1$$
For L:
$$0 = -3a_1 + b_1 - c_1 + d_1$$
For T:
$$0 = -c_1 - 3d_1 - 3$$
For θ :
$$0 = -d_1 - 1$$

Solving the above equations, we get

$$a_1 = 0, b_1 = 1, c_1 = 0, d_1 = -1$$

$$\pi_1 = Lk^{-1} h \text{ or } \pi_1 = \frac{hL}{k}$$

π ,-term:

$$M^{0}L^{0}T^{0}\theta^{0} = (ML^{-3})^{a_{2}} \cdot (L)^{b_{2}} \cdot (ML^{-1}T^{-1})^{c_{2}} \cdot (MLT^{-3}\theta^{-1})^{d_{2}} \cdot (L^{2}T^{-2}\theta^{-1})^{a_{3}}$$

Equating the exponents of M, L, T, θ respectively, we get

For M:
$$0 = a_2 + c_2 + d_2$$
 For L:
$$0 = -3a_2 + b_2 - c_2 + d_2 + 2$$
 For T:
$$0 = -c_2 - 3d_2 - 2$$
 For θ :
$$0 = -d_2 - 1$$

Solving the above equations, we get

$$a_2 = 0, b_2 = 0, c_2 = 1, d_2 = -1$$

 $\pi_2 = \mu \cdot k^{-1} \cdot c_p$ or $\pi_2 = \frac{\mu c_p}{k}$

π_3 -term:

:.

$$M^{0}L^{0}T^{0}\theta^{0} = (ML^{-3})^{a_{3}} \cdot (L)^{b_{3}} \cdot (ML^{-1}T^{-1})^{c_{3}} \cdot (MLT^{-3}\theta^{-1})^{d_{3}} \cdot (LT^{-2})$$

Equating the exponents of M, L, T, θ respectively, we get

For M:
$$0 = a_3 + c_3 + d_3$$

For L: $0 = -3a_3 + b_3 - c_3 + d_3 + 1$
For T: $0 = -c_3 - 3d_3 - 2$
For θ : $0 = -d_3$

Solving the above equations, we get

$$a_{3} = 2, b_{3} = 3, c_{3} = -2, d_{3} = 0$$

$$\therefore \qquad \pi_{3} = \rho^{2} \cdot L^{3} \cdot \mu^{-2} \cdot (\beta g \Delta t)$$
or,
$$\pi_{3} = \frac{(\beta g \Delta t)\rho^{2} L^{3}}{\mu^{2}} = \frac{(\beta g \Delta t)L^{3}}{v^{2}}$$
or,
$$Nu = \phi (Pr) (Gr)$$
...(6.10)

or, Nu =
$$C(Pr)^n (Gr)^m$$
 (where Gr = Grashoff number) ...(6.11)

Here C, n and m are constants and may be evaluated experimentally.

6.7.ADVANTAGES AND LIMITATIONS OF DIMENSIONAL ANALYSIS

Advantages :

- 1. It expresses the functional relationship between the variables in dimensionless terms.
- **2.** By the proper selection of variables, the dimensionless parameters can be used to make certain logical deductions about the problem.
- 3. Design curves, by the use of dimensional analysis, can be developed from the experimental data or direct solution of the problem.