Reciprocating compressor

1.A single stage reciprocating compressor takes $1m^3$ of air per minute at 1.013 bar and 15° C and delivers it at 7 bar. Assuming that the law of compression is $P_v^{1.35}$ = constant, and the clearance is negligible, calculate the indicated power?

Solution

Volume of air taken in, $V_1 = 1 \text{ m}^3/\text{ min}$

Intake pressure, $p_1 = 1.013$ bar

Initial temperature, $T_1 = 15 + 273 = 288 \text{ K}$

Delivery pressure, $P_2 = 7$ bar

Law of compression: $P_V^{1.35}$ = constant

Indicated power

I.P.:

Mass of air delivered per min.,

$$m = \frac{p_1 v_1}{RT_1} = \frac{1.013 \times 10^5 \times 1}{287 \times 288} = 1.266 kg / min$$

Delivery temperature, $T_2 = T_1 \left(\frac{p2}{p1}\right)^{(n-1/n)}$

$$=288\left(\frac{7}{1.013}\right)^{(1.35-1)/1.35}=475.2K$$

Indicated work

$$= \frac{n}{n-1} mR(T_2 - T_1)kJ / \min$$

$$= \frac{1.35}{1.35 - 1} \times 1.226 \times 0.287 (475.2 - 288 = 254kJ / min$$

i.e., Indicated power I.P =
$$\frac{254}{60}$$
 = 4.23kW.(Ans)

2.An air compressor cylinder has 150mm bore and 150mm stroke and the clearance is 15%. It operates between 1 bar, 27°C and 5 bar. Take polytrophic exponent n=1.3 for compression and expansion processes find?

- i. Cylinder volume at the various salient points of in cycle.
- ii. Flow rate in m3/min at 720 rpm and .
- iii. The deal volumetric efficiency.

Given

$$\begin{split} D &= 150 \times 10^{-3} m & P_2 &= 5 \times 10^5 \text{ N/m}^2 \\ L &= 150 \times 10^{-3} \text{ m} & T_1 &= 27 + 273 = 300 \text{K} \\ V_c &= 0.15 V_s & N &= 720 \text{rpm} \\ P_1 &= 1 \times 10^5 \text{ N/m}^2 & \text{pv}^n &= \text{Cn} = 1.3 \end{split}$$

Find

Solution

$$V_1 = V_c + V_s$$

$$V_s = \frac{\pi}{4} D^2 L. N = \frac{\pi}{4} (0.15)^2 \times .0.15 \times 720 = 1.9085 m^3 / \text{min}$$

$$V_c = 0.15 V_s$$

$$= 0.15 \times 1.9085$$

$$V_c = 0.2862 \text{ m}^3 / \text{min}$$

$$V_1 = V_c + V_s$$

$$= 0.2862 + 1.9085$$

$$V_1 = 2.1948 \qquad \text{m}^3 / \text{min}$$

$$P_1V_1^n = P_2V_2^n$$

$$V_2 = V_1 \left(\frac{P_1}{P_2}\right)^{1/n}$$

$$= 2.1948 \left(\frac{1 \times 10^5}{5 \times 10_5} \right)^{1/1.3}$$

$$V_2 = 0.6366 \text{ m}^3/\text{min}$$

$$V_3 = 0.2862 \text{ m}^3/\text{min}$$
 = V_c

$$V_c = V_3$$
 :

$$P_3V_3^n = P_4V_4^n$$

$$V_4 = V_3 \left(\frac{P_3}{P_4}\right)^{1/4}$$

WKT

$$P_2 = P_3$$

$$P_1 = P_4$$

$$\therefore V_4 = V_3 \left(\frac{P_2}{P_1}\right)^{\frac{1}{n}}$$

$$=0.2862 \left[\frac{5 \times 10^5}{1 \times 10^5} \right]^{1/1.3}$$

$$V_4 = 0.98674 \text{ m}^3/\text{min}$$

∴ Volumetric efficiency $(\eta_v) = 1 + k - k \left(\frac{P^2}{P_1}\right)^{1/n}$

k= Clearance Raito =
$$\frac{V_c}{V_s} = \frac{0.2862}{1.9085}$$

$$K = 0.1499$$

$$\therefore \ \eta_v = 1 + 0.1499 - 0.1499 \left[\frac{5}{1} \right]^{1/1.3}$$

$$\eta_v = 0.633 = 63.3\%$$

$$\eta_v = 63.3\%$$

∴WKT

$$\eta_{v} = \frac{FAD}{V_{s}}$$

$$\therefore FAD = \eta_{v} \times V_{s}$$

$$= 0.633 \times 1.9085$$

$$FAD = 1.2083 \text{ m}^3/\text{min}$$

3.Calcute the diameter and stroke for a double acting single stage reciprocating air compressor of 50kW having induction pressure 100 kN/m² and temperature 150°C. The law of compression is $PV^{1.2} = C$ and delivery pressure is 500 kN/m². The revolution/sec =1.5 and mean piston speed in 150 m/min. Clearance is neglected.

Given:

Double acting single stage

Compressor

$$IP = 50kW$$

$$P_1 = 100 \times 10^3 \text{ N/m}^2$$

$$T_1 = 15 + 273 = 288K$$

$$PV^{1.2} = C$$
 : n=1.2

$$P2 = 500 \times 10^3 \text{ N/m}^2$$

$$N = 1.5 \text{ rps} = 1.5 \times 60 \text{ rpm}$$

2LN = 150m/min (Double acting)

Find

i. D and L

Solution

For double acting compressor average piston speed = 2LN

$$\therefore L = \frac{150}{2 \times 1.5 \times 60} = 0.833m$$

$$L = 0.833 \text{ m}$$

To Find D

$$IP = W.N_w$$

where

N_w = Number of working stroke

For Double acting $N_w = 2N$

For single acting $N_w = N$

:.
$$N_w = 2 \times 1.5 \times 60 = 180 \text{ rpm}$$

$$\therefore \text{W.D/cycle} = \frac{n}{n-1} p_1 V_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

$$= \frac{1.2}{1.2-1} \times 100 \times 10^3 \left(\frac{\pi}{4} D^2 \times 0.833 \right) \times \left[\left(\frac{(500)}{100} \right)^{\frac{0.2}{12}} - 1 \right]$$

$$W = 120764.2D^2 \qquad \text{N-m}$$

$$\therefore IP = \frac{W.N_w}{60}$$

$$50 \times 10^3 = \frac{1207642D^2 \times 180}{60}$$

$$D^2 = 0.1380$$

$$D = 0.371 \text{ m}$$

4.A single acting reciprocating air compressor has cylinder diameter and stroke of 200 mm and 300 mm respectively. The compressor sucks air at 1 bar and 27°C and delivers at 8 bar while running at 100 r.p.m Find: 1. Indicated power of the compressor; 2. Mass of air delivered by the compressor per minute; and 3. temperature of the delivered by the compressor. The compression follows the law $P_V^{1.25} = C$ Take R as 287 J/kg K.

Solution.

Given

$$D=200 \text{ mm} = 0.2 \text{m};$$

$$L = 300 \text{ mm} = 0.3 \text{m};$$

$$p_1$$
= 1 bar = 1×10⁵ N/m²;
 T_1 = 27°C = 27 + 273 = 300K;
 p_2 = 8 bar;
 N = 100 r.p.m
 n =1.25;
 R = 287 J/kg K

1.Indicated power of the compressor

$$V_I = \frac{\pi}{4} D^2 L = 0.0094 m^3$$

We know that workdone by the compressor for polytropic compression of air as

W =
$$\frac{n}{n-1} p_1 V_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

= $\frac{1.25}{1.25-1} \times 1 \times 10^5 \times 0.0094 \left[\left(\frac{8}{1} \right)^{\frac{1.25}{1.25-1}} - 1 \right] N - m$
=4700(1.516-1) = 2425 N-m

Since the compressor is single acting, therefore number of working strokes per minute,

$$N_w = N = 100$$

:. Indicated power of the compressor

$$=\frac{W \times N_w}{60} = \frac{2425 \times 100}{60} = 4042 \text{kW}$$

2.Mass of air delivered by the compressor per minute

Let m= Mass of air delivered by the compressor per stroke.

We know that $P_1V_1 = mRT_1$

$$m = \frac{P_1 V_1}{RT_1} = \frac{1 \times 10^5 \times 0.0094}{287 \times 300} = 0.0109 kg \text{ per stroke}$$

and mass delivered minute $=m\times N_w = 0.0109\times 100 = 1.09$ kg

3. Temperature of air delivery by the compressor

Let

 T_2 = Temperature of air delivered by the compressor.

We know that

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{8}{1}\right)^{\frac{1.25-1}{1.25}} = 8^{0.2} = 1.516$$

$$T_2 = 1.516 \times T_1 = 1.516 \times 300 = 454.8 K = 181.8^{\circ} K$$

5.A single –stage double –acting air compressor is required to deliver 14 m 3 of air per minute measured at 1.013 bar and 150 $^{\circ}$ C. The delivery pressure is 7 bar and the speed 300 r.p.m. Take the clearance volume as 5% of the swept volume with the compression and expansion index of η = 1.3 Calculate:

- Swept volume of the cylinder;
- ii. The delivery temperature;
- iii. Indicated power.

Solution

Quantity of air to be delivered = $14 \text{ m}^3/\text{min}$

Intake pressure and temperature $p_1 = 1.0.13$ bar,

 $T_1 = 15 + 273 = 288 \text{ K}$

Delivery pressure $p_2 = 7 \text{ bar}$

Compressor speed, N = 300 r.p.m

Clearance volume, $V_c = 0.05 V_s$

Compression and expansion index n=1.3

Swept volume of the cylinder, Vs:

Swept volume $V_s = V_1 - V_3 = V_1 - V_c = V_1 - 0.05 V_s$

$$V_1 - V_4 = \frac{FAD}{N_w}$$

and
$$V_1 - V_4 = \frac{14}{300 \times 2} = 0.0233 \text{ m}^3$$

Now,
$$V_1 = 1.05 \text{ V}_8 \text{ and } \frac{V_4}{V_3} = \left(\frac{p_2}{p_1}\right)^{\frac{1}{2}n} = \left(\frac{7}{1.013}\right)^{\frac{1}{2}1.3} = 4.423$$

i.e.,
$$V_1 - V_3 = 4.423 V_3 = 4.423 \times 0.05 V_s = 0.221 V_s$$

$$(V_1 - V_4) = 1.05 V_s - 0.221 V_s = 0.221 V_s$$

$$V_8 \frac{0.0233}{1.05 - 0.221} = 0.0281m^3$$

i.e Swept volume of the cylinder = 0.0281 m^3 .

ii. The delivery temperature, T2

Using the relation
$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$$

$$\therefore \qquad T_2 = T_{1 \times n} \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = 288 \times \left(\frac{7}{1.013}\right)^{\frac{1.3-1}{1.3}} = 450K$$

 \therefore Delivery temperature = $450 - 273 = 177^{\circ}$ C

iii Indicated power:

Indicated power
$$= \frac{n}{n-1} p_1 (V_1 - V_4) \left\{ \left(\frac{P_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right\}$$

$$= \frac{1.3}{1.3 - 1} \times \frac{1.013 \times 10^5 \times 14}{10^3 \times 6} \left\{ \left(\frac{7}{1.013} \right)^{\frac{1.3 - 1}{1.3}} - 1 \right\}$$

$$= 57.56 \text{ kW}$$
Indicated power = 57.56 kW

6. A single stage single acting air compressor delivers 0.6 kg of air per minute at 6 bar. The temperature and pressure at the end of suction stroke are 30°C and 1 bar. The bore and stroke of the compressor are 100 mm and 150 mm respectively. The clearance is 3% of the swept volume Assuming the index of compression and expansion to be 1.3. find:

- Volumetric efficiency of the compressor
- ii. Power required if the mechanical efficiency is 85%, and
- iii. Speed of the compressor (r.p.m)

Given

Mass of air delivered, m=0.6kg/min

Delivery Pressure, $p_2=6$ bar

Induction Pressure, $p_1=6$ bar

Induction temperature, $T_1 = 30 + 273 = 303 \text{ K}$

Bore, D = 100 mm = 0.1 m

Stroke length, L=150mm = 0.15 m

Clearance volume, $V_c = 0.03 V_s$

Mechanical efficiency η mech =85%

i. Volumetric efficiency of the compressor, η_{vol} :

$$\eta_{\text{vol}} = 1 + k - k \left(\frac{P_2}{p_1} \right)^{\frac{1}{n}}$$

Where $k = \frac{V_c}{V_c} = 0.03$

$$\therefore \quad \eta_{\text{vol}} = 1 + 0.03 - 0.03 \left(\frac{6}{1}\right)^{\frac{1}{1.3}} = 0.91096 \text{ or } 91.096\%$$

ii. Power required if the mechanical efficiency is 85%, and

Indicated power = =
$$\frac{n}{n-1} mRT_1 \left[\left(\frac{P_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

$$\frac{1.3}{1.3-1} \times \frac{0.6}{60} \times 0.287 \times 303 \left[\left(\frac{6}{1} \right)^{\frac{1.3-1}{1.3}} - 1 \right] = 1.93kW$$

 $\therefore \text{ Power required to drive the compressor:} = \frac{1.93}{\eta_{mech}} = \frac{1.93}{0.85} = 2.27kW$

iii. Speed of the compressor (r.p.m)

Free air delivery, F.A.D =
$$\frac{mRT_1}{p_1} \times \frac{0.6 \times 0.287 \times 1000 \times 303}{1 \times 10^5} = 0.5218 \text{ m}^3/\text{min}$$

Displacement volume
$$=\frac{F.A.D}{\eta_{\text{out}}} = \frac{0.5218}{0.91096} = 0.5728 \text{m}^3/\text{min}$$

Also
$$0.5728 = \frac{\pi}{4} D^2 L \times N$$
 (for single – acting compressor)

or
$$0.5728 = \frac{\pi}{4} 0.1^2 \times 0.15 \times N$$

$$\therefore \text{ Speed of compressor N} = \frac{0.5728 \times 4}{\pi \times 0.1^2 \times 0.15} = 486.2 \text{ r.p.m}$$

7.A single stage , single air compressor running at 1000 r.p.m delivers air at 25 bar . For this purpose the induction and free air conditions can be taken as 1.013 bar and 150° C and the free air delivery as 0.25 m³/min. The clearance volume is 3% of the swept volume and the stroke bore ratio is 1:2:1 Take the index of compression and expansion as 1.3. calculate also the indicated power and the isothermal efficiency

Given data:-

With clearance volume

Single stage single acting air compressor

$$p_2 = 25 \text{ bar} = 25 \times 10^5 \text{ N/m}^2$$

$$T_1 = 15^{\circ} = 273 + 15 = 288K$$

$$V_c = 0.03 V_s$$

$$\frac{V_c}{V_c} = k = 0.03$$

$$\frac{Stroke(D)}{Bore(L)} = \frac{1}{2}$$

 $PV^n = C$ (polytropic process) To find

- i. η_v , D and L
- ii. (I.P) and η_{Iso}

i.
$$\eta_{v}=1+k-k\left(\frac{P_{2}}{p_{1}}\right)^{\frac{1}{n}}$$

$$\eta_{v}=1+0.03-0.03\left(\frac{25\times10^{5}}{1.013\times10^{5}}\right)^{\frac{1}{13}}$$

$$\eta_v = 0.6766$$

ii. IP =
$$\frac{Wpoly \times N}{60}$$

Inductor power =I.P

$$Wpoly = \frac{n}{n-1} p(V_1 - V_4) \left[\left(\frac{P_2}{p_1} \right)^{\frac{n-1}{n}} \right]$$

$$\therefore \eta_{v} = \frac{FAD/V_a}{V_S}$$

$$V_s = \frac{V_a}{\eta_v} = \frac{0.25}{0.6766}$$

$$V_s = 0.369 \text{ m}^3/\text{min}$$

$$V_{s=} \frac{\pi}{4} \times D^2 \times L$$

$$0.369 = \frac{\pi}{4} \times D^2 \times 2D = \frac{\pi D^3}{2}$$

$$D = 0.617 \text{ m} = 617 \text{ mm}$$

$$L = 2D = 2 \times 0.617$$

$$L = 1234 \text{ mm}$$

$$V_c = 0.011 \text{ m}^3/\text{min} = V_3$$

$$V_1 = V_c + V_s$$

$$V_1 = 0.011 + 0.369$$

3-4 is expansion

$$pv^n = C$$

$$\frac{P_4}{P_3} = \left(\frac{v_3}{v_4}\right)^n$$

$$\frac{v_4}{v_3} = \left(\frac{P_3}{P_4}\right)^{\frac{1}{\eta}} = \left(\frac{P_2}{P_1}\right)^{\frac{1}{\eta}}$$

$$V_4 = V_3 \left(\frac{P_2}{P_1}\right)^{\frac{1}{\eta}}$$

 $V_4 = 0.129 \text{ m}^3/\text{min}$

$$Wpoly = \left(\frac{n}{n-1}\right)p(V_1 - V_4) \left[\left(\frac{P_2}{p_1}\right)^{\frac{n-1}{n}}\right]$$

$$= \frac{1.3}{0.3} \times 1.013 \times 10^{5} (0.38 - 0.129) \left[\left(\frac{2.5}{1.013} \right)^{\frac{0.3}{1.3}} - 1 \right]$$

 $W.D_{poly} = 120713.193N-min$

$$I.P = \frac{W.Dpoly \times N}{60}$$

$$I.P = \frac{12713 \times 1000}{60}$$

$$\eta_{iso} = \frac{W_{iso}}{W_{poly}}$$

$$W_{iso} p_1(V_1 - V_2) \ln \left(\frac{p_2}{p_1}\right)$$

$$\eta_{\text{iso}} = \frac{p_1(V_1 - V_2) \ln\left(\frac{p_2}{p_1}\right)}{\left(\frac{n}{n-1}\right) p_1(V_1 - V_4) \left(\frac{p_2}{p_1}\right)^{\frac{\eta-1}{\eta}} - 1}$$

$$\eta_{iso} = \frac{1.013 \times 10^5 \times (0.0380 - 0.129) \ln \left(\frac{25}{1.013}\right)}{120713.19}$$

$$\eta_{iso} = 0.675$$

$$\eta_{iso} = 67.5\%$$

8.A two stage air compressor air from 1 bar and 20° C to 42 bar. If the law of compression is $p_v^{1.35}$ = constant and the intercooling is complete to 20° C, find per kg of air:1. The work done is compressing; and 2. The mass of water necessary for abstracting the heat in the intercooler, if the temperature rise of the cooling water is 250° C

$$\begin{split} p_1 &= 1 \text{ bar } = 1 \times 10^5 \text{ N/m}^2 \\ T_1 &= 20^{\circ} \text{ C} = 20 + 273 = 293 \text{K} \\ p_3 &= 42 \text{ bar } = 42 \times 10^5 \text{ N/m}^2 \\ n &= 1.35 \\ T_3 &= 20^{\circ} \text{ C} = 20 + 273 = 293 \text{K}; \text{ m} = 1 \text{ kg}; \\ \text{Rise in temperature of cooling water } = 25^{\circ} \text{ C}; \\ R &= 287 \text{J/kg K c}_p = 1 \text{ kJ/kg K} \end{split}$$

we know that for complete intercooling, the intercooler pressure

$$p_2 = \sqrt{p_1 p_3} = \sqrt{1 \times 42} = 6.48 \ bar$$

and volume of air admitted for compression

$$V_1 \frac{mRT_1}{p_1} = \frac{1 \times 287 \times 293}{1 \times 10^5} = 0.84 m^3 / kg$$
 of air

1. Work done compressing the air

$$W = \left(\frac{n}{n-1}\right) \times p_1 \upsilon_1 \left[\left(\frac{P_2}{p_1}\right)^{\frac{n-1}{n}} + \left(\frac{P_2}{p_1}\right)^{\frac{n-1}{n}} - 2\right]$$

$$= \frac{1.35}{1.35-1} \times 1 \times 10^5 \times 0.84 \left[\left(\frac{6.48}{1}\right)^{\frac{1.35-1}{1.35}} + \left(\frac{42}{6.48}\right)^{\frac{1.35-1}{1.35}} - 2\right] N - m$$

$$= 3.24 \times 10^5 (1.62 + 1.62 - 2) = 4.017 \times 10^5 \text{ N-m}$$

2.Mass of water necessary for abstracting the heat in the intercooler.

Let m_w = Mass of water necessary /kg of air ,and

 T_2 = Temperature of the air entering the intercooler.

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} = \left(\frac{6.48}{1}\right)^{\frac{1.35-1}{1.35}} = 1.622$$

$$T_2 = T_1 \times 1.622 = 293 \times 1.622 = 475.6 \text{ K}$$

We know that heat gained by water

= Heat lost by air

∴ m_w×c_w×Rise in temperature

$$= mc_p(T_2-T_3)$$

$$m_w \times 4.2 \times 25 = 1 \times 1(475.6-293) = 182.6$$

$$m_w = 1.74 kg$$

9.A two-stage acting reciprocating compressor takes in air at the rate of 0.2 m³/s. The intake pressure and temperature of air 0.1MP_a and 16°C. The air is compressed to a final pressure of .7Mp_a. The intermediate pressure is ideal and intercooling is perfect. The compression index in both the stages is 1.25 and the compressor runs at 600 r.p.m. Neglecting clearance determine:

- i. The intermediate pressure
- ii. The total volume of each cylinder,
- iii. The power required to drive the compressor and
- iv. The rate of heat rejection in the intercooler.

Take c_p = 1.005 kJ/kg K and R =0.287 kJ/kg K

Solution .

Intake volume $V_1=0.2 \text{ m}^3/\text{s}$

Intake pressure $p_1 = 0.1 MP_a$,

Intake temperature $T_1 = 16 + 273 = 289 \text{ K}$

Final pressure $p_3 = 0.7MP_a$

Compression index in both stages, $n_1 = n_2 n = 1.25$

Speed of the compressor N = 600 r.p.m

$$c_p = 1.005 \text{kJ/kg K}; R = 0.287 \text{kJ/kg K}$$

i. The power required to drive the compressor, P2:

$$p_2 = \sqrt{p_1 p_3} = \sqrt{0.1 \times 0.7} = 0.2646 \ MP_a$$

ii. The total volume of each cylinder , V_{s1}, V_{s2}:

We know that
$$V_{s1} \times \frac{N}{60} = V_1$$
 or $V_{s1} \times \frac{600}{60} = 0.2$

$$\therefore V_{s1} \text{ (Volume of L.P cylinder)} = \frac{600 \times 0.2}{60} = 0.02 m_3 \text{ (Ans)}.$$

Also
$$p_1 V_{si} = p_1 V_{s2}$$
 or $V_{s2} = \frac{p_1 V_{si}}{p_2}$

$$V_{S2}$$
 (Volume of H.P. Cylinder) = $\frac{0.1 \times 0.02}{0.2646} = 0.00756 m^3$ (Ans)

iii. The rate of heat rejection in the intercooler:

Mass of air handled,
$$m = \frac{p_1 V_1}{RT_1} = \frac{(0.1 \times 10^3) \times 0.2}{0.287 \times 289} = 0.241 \text{ kg/s}$$

Also,
$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-l}{n}}$$
 or $\frac{T_2}{289} = \left(\frac{0.2646}{0.1}\right)^{\frac{1.25-l}{1.25}}$ or $T_2 = 351.1$ K

 \therefore Heat rejected in the intercooler = m $\times c_p \times (T_2 - T_1)$

$$= 0.241 \times 1.005 \times (351.1-289) = 15.04 \text{ kJ/s or } 15.04 \text{ kW.(Ans)}$$

- 10. A single acting reciprocating air compressor has a swept volume of 2000 cm³ and runs at 800 rpm. It operates with pressure ratio of 8 and clearance of 5% of the swept volume. Inlet pressure and temperature are 1.013 bar, and 15°C respectively. Assume n=1.25 for both compression and expansion. Find
 - i. Indicated power
 - ii. Volumetric efficiency
 - iii. Mass flow rate
 - iv. FAD
 - v. Isothermal efficiency
 - vi. Actual Power required to drive the compressor if η_{mech} =85%

Given

Single acting reciprocating compressor

$$V_c = 2000 \text{ cm}^3 = 0.002 \text{ m}^3$$

$$N = 800 \text{ rpm}$$

$$\frac{P_2}{P_1} = \frac{P_3}{P_4} = 8$$

$$V_c$$
 = 5% V_s
= 0.05×0.002
 V_c = 0.0001 m³
 p_1 = 1.013×10⁵ N/m²
 T_1 = 15+273 = 288 K

$$P_V^n = C \qquad n = 1.25$$

Find: i)IP ii) η_v iii)m iv) FAD(V_a) v) η_{iso} vi) P_{act} if η_m =85% Solution

WKT

Clearance ratio (k) =
$$\frac{V_c}{V_s} = \frac{0.0001}{0.002}$$

∴ Volumetric efficiency
$$(\eta_v) = 1+k-k\left(\frac{P_2}{P_I}\right)^{\frac{1}{n}}$$

$$= 1+0.05-0.05 (8)^{1/1.25}$$

$$\eta_v = 78.61\%$$

WKT

$$\eta_{v} = \frac{FAD}{V_{s}}$$

$$FAD = \eta_{v} \times V_{s}$$

$$= 0.7861 \times 0.002$$

$$= 1.5722 \times 10^{-3} \text{ m}^{3}$$

$$\frac{FAD}{\min} = \frac{FAD}{\text{Stroke}} \times \text{Speed}$$

$$= 1.5722 \times 10^{-3} \times 800$$

$$\therefore FAD = 1.2578 \text{ m}^{3}/\text{min}$$

To find mass flow rate

$$Pv = mRT$$

$$m = \frac{pV}{RT} = \frac{1.013 \times 10^5 \times 1.2578}{287 \times 288}$$

$$m = 1.542 \text{ kg/min}$$

To find - Indicated power

$$IP = \frac{W.D \times N_{es}}{\sec}$$

$$N_w = N \text{ (single acting)} = 800 \text{ rpm.}$$

W.D =
$$\frac{n}{n-1} mR(T_2 - T_1) \text{ kJ/min.}$$

$$T_2 = T_I \left(\frac{P_2}{P_I}\right)^{\frac{n-1}{n}}$$

$$= 288(8)^{\frac{1.25-1}{1.25}}$$

$$T_2 = 436.53 \text{ K}$$

:. W.D =
$$\frac{1.25}{0.25} \times 1.542 \times 0.287(436.53 - 2880)$$

$$W.D = 328.66 \text{ kJ/min}$$

∴ IP =
$$\frac{W.D}{s} = \frac{328.66}{60}$$

$$IP = 5.48 \text{ kW}$$

To find isothermal efficiency

$$W_{iso} = P_{l}V_{l} \ln \left(\frac{P_{2}}{P_{l}}\right)$$

$$= mRT_{1} \ln \left(\frac{P_{2}}{P_{l}}\right)$$

$$= 1.542 \times 0.287 \times 288 \times \ln (8)$$

$$(W.D)_{iso} = 265.04 \text{ kJ/min}$$

$$\eta_{iso} = \frac{(W.D)_{iso}}{(W.D)_{act}}$$

∴ Actual work=
$$\eta_{mech} \times (W.D)_{theoretical}$$

= 0.85×328.66

$$(W.D)_{act} = 279.361 \text{ kJ/min}$$

$$\therefore \eta_{iso} = \frac{265.04}{279.361} \times 100$$

$$\eta_{iso} = 94.87\%$$

- 11. An air compressor takes in air at 1 bar and 20° C and compresses it according to law $pv^{1.2}$ =constant. It is then delivered to a receiver at a constant pressure of 10 bar. R=0.287 kJ/kg K. Determine
 - (i) Temperature at the end of compression
 - (ii) Workdone and heat transferred during compression per kg of air.

Solution

Law of compression : $pv^{1.2}=C$; R=287 J/kgK

(i) Temperature at the end of compression T2

For compression process 1-2, we have

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} = \left(\frac{10}{1}\right)^{\frac{1.2-1}{1.2}} = 1.468$$

$$T_2=T_1\times 1.468 = 293\times 1.468 = 430 \text{ K or } 157^{\circ}\text{C}$$

(ii) Workdone and heat transferred during compression per kg of air:

Workdone, W= mRT₁
$$\frac{n}{n-1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

= 1×0.287×293× $\left(\frac{1.2}{1.2-1} \right) \left(\frac{10}{1} \right)^{\frac{1.2-1}{1.2}} - 1 = 236.13kJ / kg of air$

Heat transferred during compression,

$$Q = W + \Delta U$$

$$= \frac{p_1 v_1 - p_2 v_2}{n - 1} + c_v (T_2 - T_1) = (T_2 - T_1) \left[c_v - \frac{R}{n - 1} \right]$$

$$= (430-293) \left[0.718 - \frac{0.287}{1.2 - 1} \right] = -98.23 \text{ kJ/kg}$$

Negative sign indicates heat rejection.