Kirchhoff's Laws and Circuit Analysis (EC 2)

- Circuit analysis: solving for I and V at each element
- Linear circuits: involve resistors, capacitors, inductors
- Initial analysis uses only resistors
- Power sources, constant voltage and current
- Solved using Kirchhoff's Laws (Current and Voltage)

Circuit Nodes and Loops

- Node: a point where several wires electrically connect
- Symbolized by a dot or circle at the wire crossing
- If wires cross without a dot, then not connected
- Nodes also called junctions
- Typically give nodes a number or letter

- Branches: lines with devices connecting two nodes
- Loop: an independent closed path in a circuit
- There may be several possible closed paths

Kirchhoff's Current Law (KCL)

- Kirchhoff's Current Law (KCL)
- The algebraic sum of currents entering any node (junction) is zero

$$
\sum_{j=1}^{N} I_{j}=0
$$

where $\mathrm{N}=$ number of lines entering the node

- NOTE: the sign convention:
- Currents are positive when they entering the node
- Currents negative when leaving
- Or the reverse of this.

KCL is called a Continuity Equation:
It says current is not created or destroyed at any node

Example of Kirchhoff's Current Law (KCL)

- Consider the simple parallel resistances below
- At node 1 define current positive into resistors
- Since V on $\mathrm{R}_{1}=5 \mathrm{~V}$ the current is

$$
I_{1}=\frac{V}{R_{1}}=\frac{5}{1000}=5 \mathrm{~mA}
$$

- Same V on $R_{2}=5 V$ the current is

$$
I_{2}=\frac{V}{R_{2}}=\frac{5}{5000}=1 \mathrm{~mA}
$$

- Thus by KCL at node 1

$$
I_{1}+I_{2}+I_{3}=0.005+0.001+I_{3}=0
$$

- Thus the total current is

$$
I_{3}=-I_{1}-I_{2}=-6 \mathrm{~mA}
$$

- Node 2 has the negatives of these values

Kirchhoff's Voltage Law (KVL)

- Kirchhoff's Voltage Law (KVL)
- Algebraic sum of the voltage drops around any loop or circuit $=0$

$$
\sum_{j=1}^{N} V_{j}=0
$$

where $\mathrm{N}=$ number of voltage drops

- NOTE: the sign convention
- Voltage drops are positive in the direction of the set loop current
- Voltage drops negative when opposite loop current
- Voltage sources positive if current flows out of + side
- Voltage sources negative if current flows into + side

- A loop is an independent closed path in the circuit
- Define a "loop current" along that path
- Real currents may be made up of several loop currents

$$
I_{R 1}=I_{1}-I_{2}
$$

Example Kirchhoff's Voltage Law (KVL)

Consider a simple one loop circuit
Voltages are numbered by the element name
eg. V_{1} or $\mathrm{V}_{\mathrm{R} 1}$: voltage across R_{1}
Going around loop 1 in the loop direction
Recall by the rules:

- Voltage drops negative when opposite loop current.
- Voltage sources positive if current flows out of + side

$$
V_{s}-V_{1}=0
$$

Example Kirchhoff's Voltage Law (KVL) Continued

- Thus voltage directions are easily defined here:

$$
V_{s}-V_{1}=0
$$

- Why negative V_{1} ? Opposes current flow I_{1}
- Since

$$
\begin{gathered}
V_{1}=I_{1} R_{1} \\
V_{s}-I_{1} R_{1}=0
\end{gathered}
$$

- Thus this reduces to the Ohms law expression

$$
I_{1}=\frac{V_{s}}{R_{1}}
$$

KVL Example Resistor Voltage Divider

- Consider a series of resistors and a voltage source
- Then using KVL

$$
V-V_{1}-V_{2}=0
$$

- Since by Ohm's law

$$
V_{1}=I_{1} R_{1} \quad V_{2}=I_{1} R_{2}
$$

- Then

$$
V-I_{1} R_{1}-I_{1} R_{2}=V-I_{1}\left(R_{1}+R_{2}\right)=0
$$

- Thus

$$
I_{1}=\frac{V}{R_{1}+R_{2}}=\frac{5}{2000+3000}=1 \mathrm{~mA}
$$

- i.e. get the resistors in series formula

$$
R_{\text {total }}=R_{1}+R_{2}=5 \mathrm{~K} \Omega
$$

KVL Example Resistor Voltage Divider Continued

- What is the voltage across each resistor?
- Now we can relate V_{1} and V_{2} to the applied V
- With the substitution

$$
I_{1}=\frac{V}{R_{1}+R_{2}}
$$

- Thus V_{1}

$$
V_{1}=I_{1} R_{1}=\frac{V R_{1}}{R_{1}+R_{2}}=\frac{5(2000)}{2000+3000}=2 \mathrm{~V}
$$

- Similarly for the V_{2}

$$
V_{1}=I_{1} R_{2}=\frac{V R_{2}}{R_{1}+R_{2}}=\frac{5(3000)}{2000+3000}=3 \mathrm{~V}
$$

KVL and KCL for Different Circuits

- With multiple voltage sources best to use KVL
- Can write KVL equation for each loop

- With multiple current sources best to use KCL
- Can write KCL equations at each node.

- In practice can solve whole circuit with either method

Resistors in Series (EC3)

- Resistors in series add to give the total resistance

$$
R_{\text {total }}=\sum_{j=1}^{N} R_{j}
$$

- Example: total of 1, 2, and 3 Kohm resistors in series

- Thus total is

$$
R_{\text {total }}=R_{1}+R_{2}+R_{3}=1000+2000+3000=6 \mathrm{~K} \Omega
$$

- Resistors in series law comes directly from KVL

Resistors in Parallel

- Resistors in parallel:
- Inverse of the total equals the sum of the inverses

$$
\frac{1}{R_{\text {total }}}=\sum_{j=1}^{N} \frac{1}{R_{j}}
$$

This comes directly from KCL at the node

$$
I_{\text {total }}=\frac{V}{R_{\text {total }}}=\sum_{j=1}^{N} I_{j}=\sum_{j=1}^{N} \frac{V}{R_{j}}
$$

- NOTE: inverse of resistance called conductance (G)
- Units are mhos (ohms spelled backwards)

$$
G_{\text {total }}=\sum_{j=1}^{N} G_{j}
$$

- Thus when work in conductance change parallel to series equations

Example Parallel Resistors

Example 1K and 2K resistors in parallel

$$
\begin{gathered}
\left\{\begin{array} { c }
{ \{ } \\
{ \{ R _ { 1 } = | K _ { \Omega } }
\end{array} \left\{R_{2}=2 K_{\Omega}\right.\right. \\
\frac{1}{R_{\text {total }}}=\sum_{j=1}^{N} \frac{1}{R_{j}}=\frac{1}{1000}+\frac{1}{2000}=\frac{3000}{2000000} \\
R_{\text {total }}=666 \Omega
\end{gathered}
$$

Example Parallel Resistors

- Example: two 1 Kohm resistors in parallel

$$
\frac{1}{R_{\text {total }}}=\sum_{j=1}^{N} \frac{1}{R_{j}}=\frac{1}{1000}+\frac{1}{1000}=\frac{2}{1000} \ldots \text { or } \ldots R_{\text {total }}=500 \Omega
$$

- Thus adding N same resistors cuts get

$$
R_{\text {total }}=\frac{R}{N}
$$

- Good way to get lower R values

