UNIT -V TIME VARYING FIELDS

Faraday’s Law of Electromagnetic Induction — It’s Integral and Point Forms — Maxwell’s Fourth
Equation. Statically and Dynamically Induced E.M.F’s — Simple Problems — Modified Maxwell’s
Equations for Time Varying Fields — Displacement Current.

Wave Equations — Uniform Plane Wave Motion in Free Space, Conductors and Dielectrics —
Velocity, Wave Length, Intrinsic Impedence and Skin Depth — Poynting Theorem — Poynting Vector
and its Significance.

Faraday's Law of electromagnetic Induction

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop
when the magnetic flux linking the loop changed. In terms of fields, we can say that a time varying
magnetic field produces an electromotive force (emf) which causes a current in a closed circuit. The
quantitative relation between the induced emf (the voltage that arises from conductors moving in a
magnetic field or from changing magnetic fields) and the rate of change of flux linkage developed
based on experimental observation is known as Faraday's law. Mathematically, the induced emf can
be written as

_d¢
Emf= & Volts (5.3)

where ? is the flux linkage over the closed path.

d ¢
A non zero 9f may result due to any of the following:
(a) time changing flux linkage a stationary closed path.
(b) relative motion between a steady flux a closed path.
(c) a combination of the above two cases.
The negative sign in equation (5.3) was introduced by Lenz in order to comply with the polarity of
the induced emf. The negative sign implies that the induced emf will cause a current flow in the
closed loop in such a direction so as to oppose the change in the linking magnetic flux which
produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming a
loop does not necessarily have to be conductive).
If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux

linking the coil induces an emf in each turn of the coil and total emf is the sum of the induced emfs
of the individual turns, i.e.,
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_w&e
Emf = di  Volts (5.4)

By defining the total flux linkage as
A= (5.5)
The emf can be written as

_dk
Emf= dt (5.6)

Continuing with equation (5.3), over a closed contour 'C' we can write

Edi
Emfz?c (5.7)

where £ is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by

@=l§d§ -

Where S is the surface for which 'C' is the contour.

From (5.7) and using (5.8) in (5.3) we can write

§.Edl=-2qBa

(5.9)
By applying stokes theorem
vaﬁd5=1[E§¢E
. 5 0t (5.10)
Therefore, we can write
VHE = —E
o (5.11)

which is the Faraday's law in the point form
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dg
We have said that non zero @ can be produced in a several ways. One particular case is when a

time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary
closed path by a time varying magnetic field is called a transformer emf .

Example: Ideal transformer
As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled magnetically

through a common core. Let us consider an ideal transformer whose winding has zero resistance, the
core having infinite permittivity and magnetic losses are zero.

/]

Primary
winding Sceondary
winding
Core

Fig 5.1: Transformer with secondary open

These assumptions ensure that the magnetization current under no load condition is vanishingly
small and can be ignored. Further, all time varying flux produced by the primary winding will follow
the magnetic path inside the core and link to the secondary coil without any leakage. If N; and N; are
the number of turns in the primary and the secondary windings respectively, the induced emfs are

g =N @

ot (5.12a)
ey = I, @

odf (5.12b)

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end
of the winding.)

8 _ M

e Iy (5.13)
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i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under
ideal condition, the induced emf in either winding is equal to their voltage rating.

n_ M

=— =g

v; M (5.14)

where 'a" is the transformation ratio. When the secondary winding is connected to a load, the current
flows in the secondary, which produces a flux opposing the original flux. The net flux in the core
decreases and induced emf will tend to decrease from the no load value. This causes the primary
current to increase to nullify the decrease in the flux and induced emf. The current continues to
increase till the flux in the core and the induced emfs are restored to the no load values. Thus the
source supplies power to the primary winding and the secondary winding delivers the power to the
load. Equating the powers

L T e

v, g M (5.16)
Further,
IIENE_E.].M: [:I (5.17)

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal
condition.

Motional EMF:

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2.

=1 Os

Fig 5.2
If a charge Q moves in a magnetic field E, it experiences a force

F=QvxB (5.18)
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This force will cause the electrons in the conductor to drift towards one end and leave the other end
positively charged, thus creating a field and charge separation continuous until electric and magnetic
forces balance and an equilibrium is reached very quickly, the net force on the moving conductor is

Z€ero.

=yx B
can be interpreted as an induced electric field which is called the motional electric field

o] =l

w=VXE (5.19)

ol

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit

vxBdi
IS Ech . This emf is called the motional emf.
A classic example of motional emf is given in Additonal Solved Example No.1 .

Maxwell's Equation

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For time
varying case, the relationship among the field vectors written as

VHE = _32

a (5.20a)
VxH =7 (5.200)
v.D-p (5.20c)
VE=0 (5.20d)

In addition, from the principle of conservation of charges we get the equation of continuity

vi--
ot (5.21)

The equation 5.20 (a) - (d) must be consistent with equation (5.21).

We observe that

VVXHE=0=V.J (5.22)

Since ¥ * 4 s zero for any vector .
el 0
Thus ¥ *# =.J applies only for the static case i.e., for the scenario when &
A classic example for this is given below .
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Suppose we are in the process of charging up a capacitor as shown in fig 5.3.

Balloon shaped Amperian Loop

surfnee

Fig 5.3

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. lenc = | is the total current
passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes
through this surface and hence lg,c = 0. But for non steady currents such as this one, the concept of
current enclosed by a loop is ill-defined since it depends on what surface you use. In fact Ampere's
Law should also hold true for time varying case as well, then comes the idea of displacement current
which will be introduced in the next few slides.

We can write for time varying case,

v.(v><§)=o=v.}’+a—*g
as
— a —
=TI+ D
Az
~ a0
B
‘ (5.23)
R
0f (5.24)

The equation (5.24) is valid for static as well as for time varying case.

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field even in
3D
3 — _— ()
the absence of + . The term & has a dimension of current densities and is called the
displacement current density.

a0
Introduction of & in ¥ *& equation is one of the major contributions of Jame's Clerk Maxwell.
The modified set of equations

a (5.25a)
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VxH =J+——

at (5.25h)
v.h=p (5.25¢)
vE=0 (5.25d)

is known as the Maxwell's equation and this set of equations apply in the time varying scenario,

)
_— [:I
static fields are being a particular case [aﬁ :

In the integral form

— a5 —
Edi=- —d&
. % (5.262)
_—— aDY = _ @ -
?ﬁH.d-‘j‘ —J‘S[J +E]d3 I+J‘S ” ds (5.26b)
[,VDav=¢,DdS = [, odv (5260

foas=0 (5.26d)

The modification of Ampere's law by Maxwell has led to the development of a unified
electromagnetic field theory. By introducing the displacement current term, Maxwell could predict
the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz
experimentally which led to the new era of radio communication.
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10.2 General Wave Equations

In general the wave equations can be obtained by relating the space and time
variations of the electric and magnetic fields, using the Maxwell's equations.

To obtain general wave equations, let us assume that the electric and magnetic fields
exist in a linear, homogeneous and isotropic medium with the parameters i, £ and o. Also
assume that the medium is source free which clearly gives the idea about the charge free
medium. Assume that the medium obeys the ohm's law i.e. ] = o E Then the Maxwell's

equations are given by,

VxE = —p% (1)

vxﬁ = GE!—EE 44-{2}

V.B =0 ie VH=0 A3

. V.D = 0 ie V.E=0 ()
To eliminate H from equation (1), taking curl on both the sides of equation (1), we get,
Vx(VXE) = —p{?x%’-] .5

V operates indicates differentiation with respect to space while % operates

differentiation with respect to time. Both are independent of each other, the operators can
be interchanged.

So we get,
VxVxE = -I_L%{?xﬁl .6)

Substituting value of V x H from equation (2), we get,

VxVxE —u%[uﬁ+s%—§]

- E ’E
VxVxE = —uﬁ%—HE%IZE {7

Now according to the vector identity,

VxVxE = V(V.E)-V?E ...(8)
Substituting V.E = 0 from equation (4), we can modify equation (8) as,

VxVxE = -V2E «.(9)

Substituting value of V xV x E from equation (9) in equation (2) we get,
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= Hogr-kegy
= JoE I°E
V2E = pc—é—t—+pest—2- ...(10)

This is the wave equation for the electric field E Now multiplying both the sides of
equation (10) by &

- deE 9%cE
2 &
V*(@E€E) = po 5 THE e
- aD 2°D
i 2 - [— —_—
ie V<D Ho 5 +UE e ...(11)

This is the wave equation for D in uniform medium.

Exactly on the similar lines, the wave equation for H can be obtained by taking curl on
both the sides of equation (2), we get, 58
E

Vx(VxH) = Vx(oi)-rerﬁ ..(12)

As V operator and % represent independent relationship between the two, we can

interchange them as follows.
VxVxH = o(Vx'!_-I)+£a%(Vx-E‘) ..(13)

Substituting VX E = -pa_atﬁ in equation (12), we get,

- dH oH
VxVxH = c{—p?]-he[—p,—m-]
VxVxH = -gq%ﬂ—pa%lti ...(14)
From the vector indentity,
VxVxH = V(V.H-V’H ..(15)
Substituting V. H = 0 from equation (4) in equation (15), we get
VxVxH = -V*H ...(16)
Substituting value of VxVxH in equation (14) we get,
— oH 9H
-VZH = KOS —pE=
— aH Jd*’H
+ 2 -
ie V‘H = I.I.G—at—ﬂ.t.e—at— ...(17)

This is the wave equation for the magnetic ficld H. Now multiplying both the sides by
U, we get,
ouH 2% (uH)

2 H m
VIpH) = pog— +pe—g
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...(18)

This is the wave equation for D in the uniform medium. Hence in general we can
write,

3
+H E-a—

v? 30 ...(19)

)
= BOSY

ol Ol m
=i X Ol ml

=i X O ml

Above equation is three dimensional equation for all the field vectors.

9.2 Uniform Plane Wave in Free Space

Assume an electromagnetic wave travelling in free space. Consider that an electric
field is in x-direction; while a magnetic field is in y-direction. Both the fields will not
vary with x and y; but with z only. They will also change with time as the wave

propagates in free space.
Consider Maxwell's equation expressed in E and H as

o _ 7,90
Vx = —_—
H= ]+ A
Let us assume that a free space is perfect dielectric, then J =0,
= _ @D
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Expressing Din rectangular co-ordinate system,

VxH = 2 [Dydy +Dy dy +D. ]

Writing curl of H on left of equation,

|:<'}Hz BHF]_I+|:6H,‘ ﬂH;]_ +[5H, ﬂH‘}i,

By oz |78z ax | Y|Tax Ay

5??? [Dya, +Dy 3, +D, 7, ]

As H is in y-direction, H, =H, =0,

oHy _ 0Hy _ & .. _ _ _
B P R e P e [D,a, +Dy a, +D,a,]

Also Hy is not changing with x, as it is uniform in x-y plane, so 5 : =0

dHy _ 8 _ _ _
"‘H" a-; = E?[Dxax +D? ar +Dzi;]

Equating L.H.S. and R.H.S. of above equation directionwise, we can write,

_0H, _ ap,
dz ot
aH, 3E, -
7z " ® At Desk
aH, JE
S .
oz T @

Now consider Maxwell's equation derived from Faraday's law,

— B
V=E = Ty

Using rectangular co-ordinate system, we can write,
dz ady | * |8z ax |"Y |ay ox|°"

= - % [B,a, +B,a, +B.a;]
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As E is in x-direction, Ey =E, =0,

GEx _  OE,._ 0 - _ _
3z Bt ay A =g [Bxd. +Byay, +B.4,]
; . . . . . dE,
Also component E, is not varying with y, as it is uniform in x-y plane, so 3y 0,
dEx _ d - — —
Equating L.H.S. and RH.S. of above equation directionwise, we can write,
dE, _ 3B,
dz = at
JE, dH, - —
37 = M e B=pH
¢dH 1 @E,
- = == . (2)
it p dz
Differentiating equation (1) with respect to t,
a |[8Hy | _ 02 E,
ﬂ[ 0z ] BN TS ~©)
Now differentiating equation (2) with respect to z,
é [éHy | 1 @%E,
E[at ]' “p a8z - ()

Now observe L.H.S. of equations (3) and (4). As we can change order of
differentiation, L.H.S. of equations (3) and (4) is same. So equating R.H.S. of both the
equations,

'Ec?z E, _ 1 92 E,
at? u az?
g2 E, 1
ot HE 0z

. (5)

According to the results in physics,

1
v = —

I

where v is the velocity of propagation also called wave velocity. For the free space
it is denoted by ¢ and its value is 3x10® m/s.
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Hence we can rewrite equation (5) as,

ﬂtz azz ans {6]

Above equation is the wave equation and it is differential equation of second
order. Solving this equation mathematically, the solution is given by

E. = E}, cos(wt-Pz)+Eqn cos(ot+Pz)V /m o (7

Above equation (7) is a sinusoidal function consisting two components of an
electric field ; one in forward direction and other in backward direction. The wave
consists one component of the field travelling in positive z direction having amplitude
E; i while other component having amplitude Ej, travelling in negative z direction.

We can rewrite equation (7) as follows,

E. = E} cmm(t—Ez)+ Em -:mw[t+Ez] V/m ... (8)
(o L]

Two partial differentiations of equation (8) with respect to z and t yields a similar
equation given by

0?E, _ P2 (K,
az? wzlﬁtz

. (9)

It is clear that equations (6) and (9) are similar equations. So comparing these two
equations we can get another expression for velocity as,

v o= % m/s .. (10)

We can obtain similar type of equations for magnetic field H by considering
equation (2) and putting value of E, from equation (8),

oHy 1 & [.. p - p

<t - EE[Em cosw{t Ez)irEm cnsm[t+mz

é¢Hy 1 . B - p

2t = —E [ﬂEm smm[t—az]-BEm smm[t+az
Integrating both sides with respect to time, we get,

Hy = B E., ct}sm[t—gz]—m—ﬁl Em cﬂam(t+{%z)

Wi

H, = Hj, cos(ot-Bz)- H;, cos(ot+pz)A / m . (11)
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This equation is similar to equation (7) representing two components of a magnetic
field one in forward direction while other in backward direction.

From equations (7) and (11) it is clear that when we assume x component for E, it
results in y component for H. Both E and H are in time phase and both are
perpendicular to each other. Both these fields lie in a plane which is perpendicular to
the direction of wave propagation. Thus E and H together form transverse
electromagnetic (TEM) wave ; with one forward travelling wave in the positive

z-direction with velocity %} and another backward travelling wave in negative

z-direction with the same velocity. Thus E and H are only the functions of direction of
travel and time.

In general, when any wave propagates in the medium, it gets attenuated. The
amplitude of the signal reduces. This is represented by an attenuation constant a. It is
measured in neper per meter (Np/m). But practically it is expressed in decibel (dB).
The conversion between a basic unit neper (Np) and decibel (dB) is given by

1 Np = 8686 dB

It is also observed that when a wave propagates, phase change also takes place.
Such a phase change is expressed by a phase constant fi. It is measured in radian per
meter (rad/m).

So attenuation constant («) and phase constant () together constitutes a
propagation constant of medium for uniform plane wave. It is represent by y. It is

expressed per unit length as
Yy = a+jp - (12)
The ratio of amplitudes of E to H of the waves in either direction is called

intrinsic impedance of the material in which wave is travelling. It is denoted by n and
given by,

En En @
= =M o e =sp.u 2
n H;, He, B 1) e (13)
1
But as we know, u=E=—,
P Jue
= _“,zJE 0
Ayl b - (14)
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For free space, intrinsic impedance is denoted by 1,

no = ‘:—n'l =120 1 Q =377Q .. (15)

and

v =c= =3x10® m/s - (16)

HpEq

In general, wave repeats itself after 2x radians. In otherwords, if & is the length of
one cycle of sinusoidal signal, then signal changes phase by 360° or 2x radians. So we
can write relation between A and p as,

A= % m .. (17)
Multiplying both sides of equation (17) by frequency f,
2nt @
l = —= ==
O@) = F=§="

Thus velocity of propagation or wave velocity is given by,

v =fA m/s .. (18)

9.3 Wave Equations in Phasor Form

An electromagnetic wave in a medium can be completely defined if intrinsic
impedance (n) and propagation constant (y) of a medium is known. Thus it is
necessary to derive the expressions for n and y in terms of the properties of a medium
such as permeability (1), permittivity (¢), conductivity (o) etc.

Consider Maxwell’s equation derived from Faraday's law,

VxE = --'.7-—-=- —_ w (1)

VxVxE

i
I
E =
iy |
<
x
Q) Q’
|z
| DN

VxVxE « (2)

"
1
=
N
~l®
P~
<
X
oo
S
——
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Using vector identity to the left of equation (2),
- - 8 —
~VIE = -u|—
V(V.E)-V2E = u[:at(?xﬂ)]
But according to another Maxwell's equation,

— = 8D
VxH = I+Et-

Putting value of V x H in equation (3),
= = a(: 8D
V(VeE)-V2E = —u|Z|]7+5=
(V-E)-VZE “l&t[“at ]]

Since most of the regions are source or charge free,
V.E =0
V(V-E) = 0

Putting value of ‘?(T-" . E) in equation (4), assuming charge free medium,

- - D
- 7]

Making both sides positive,

" a 3 al—)
V2E = H [.a_t(J+WJ]

. (3)

- (4)

e (5)

Consider a general electromagnetic wave with both the fields, E and H varying
with respect to time. When any field varies with respect to time, its partial derivative
taken with respect to time can be replaced by jo Rewriting equation (5) in phasor

form,
V2E = u[jo(J+joD)]
V2E = jop[(cE)+jo(cE)]
V2E = [joopE+(jo)enE]
V2E = [jop(o +joe)]E

. (6)
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In similar way, we can write another phasor equation as,
VIH = [jou(o +jwe)]H e (7)

The terms inside the bracket in equations (6) and (7) are exactly similar and
represent the properties of the medium in which wave is propagating. The total
bracket is the square of a propagation constant y, hence we can rewrite equations (6)
and (7) as,

V2E = y2E and
V:H = y*H
So the propagation constant y can be expressed in terms of properties of the

medium as,
v = a+jB = fjou(s +jo) . (8)

The real and imaginary parts of y are attenuation constant (a) and phase constant
(B) and both can be expressed in terms of the properties of the medium,

a = {HJF—;[ l+[%]1 -IJ « (9)

2
and f = w EIE[ IJ{&] +1J - (10)

The intrinsic impedance of a medium can be expressed interms of the properties of
a medium and is given by,

_ [on
n = e .. (1)
It can also be expressed in polar form as |n| £0 where

.

nle

2
1 +[-—G )
QE

tan 26 = g 0°< B< 45°
WE

n| = and

Let us summarize the equations which are helpful in describing the
electromagnetic waves (uniform plane waves). Table 9.1 lists equations describing the
propagation of EM waves in a medium.
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