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UNIT - V  TIME VARYING FIELDS        

Faraday’s Law of Electromagnetic Induction – It’s Integral and Point Forms – Maxwell’s Fourth 

Equation. Statically and Dynamically Induced E.M.F’s – Simple Problems – Modified Maxwell’s 

Equations for Time Varying Fields – Displacement Current. 

Wave Equations – Uniform Plane Wave Motion in Free Space, Conductors and Dielectrics – 

Velocity, Wave Length, Intrinsic Impedence and Skin Depth – Poynting Theorem – Poynting Vector 

and its Significance. 

 

Faraday's Law of electromagnetic Induction 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop 

when the magnetic flux linking the loop changed. In terms of fields, we can say that a time varying 

magnetic field produces an electromotive force (emf) which causes a current in a closed circuit. The 

quantitative relation between the induced emf (the voltage that arises from conductors moving in a 

magnetic field or from changing magnetic fields) and the rate of change of flux linkage developed 

based on experimental observation is known as Faraday's law. Mathematically, the induced emf can 

be written as 

Emf =     Volts                           (5.3) 

where  is the flux linkage over the closed path. 

 

A non zero  may result due to any of the following: 

(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path. 

(c) a combination of the above two cases. 

The negative sign in equation (5.3) was introduced by Lenz in order to comply with the polarity of 

the induced emf. The negative sign implies that the induced emf will cause a current flow in the 

closed loop in such a direction so as to oppose the change in the linking magnetic flux which 

produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming a 

loop does not necessarily have to be conductive). 

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux 

linking the coil induces an emf in each turn of the coil and total emf is the sum of the induced emfs 

of the individual turns, i.e., 
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Emf =      Volts                                (5.4) 

 

By defining the total flux linkage as 

                                        (5.5) 

The emf can be written as 

Emf =                                  (5.6) 

Continuing with equation (5.3), over a closed contour 'C' we can write 

Emf =                               (5.7) 

where  is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by 

                                         (5.8) 

Where S is the surface for which 'C' is the contour. 

From (5.7) and using (5.8) in (5.3) we can write 

                        (5.9) 

By applying stokes theorem 

                        (5.10) 

Therefore, we can write 

                                        (5.11) 

which is the Faraday's law in the point form 
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We have said that non zero  can be produced in a several ways. One particular case is when a 

time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary 

closed path by a time varying magnetic field is called a transformer emf . 

Example: Ideal transformer 

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled magnetically 

through a common core. Let us consider an ideal transformer whose winding has zero resistance, the 

core having infinite permittivity and magnetic losses are zero. 

 

 Fig 5.1: Transformer with secondary open 

These assumptions ensure that the magnetization current under no load condition is vanishingly 

small and can be ignored. Further, all time varying flux produced by the primary winding will follow 

the magnetic path inside the core and link to the secondary coil without any leakage. If N1 and N2 are 

the number of turns in the primary and the secondary windings respectively, the induced emfs are 

                                 (5.12a) 

                                 (5.12b) 

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end 

of the winding.) 

                                  (5.13) 
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i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under 

ideal condition, the induced emf in either winding is equal to their voltage rating. 

                                (5.14) 

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the current 

flows in the secondary, which produces a flux opposing the original flux. The net flux in the core 

decreases and induced emf will tend to decrease from the no load value. This causes the primary 

current to increase to nullify the decrease in the flux and induced emf. The current continues to 

increase till the flux in the core and the induced emfs are restored to the no load values. Thus the 

source supplies power to the primary winding and the secondary winding delivers the power to the 

load. Equating the powers 

                                     (5.15) 

                       (5.16) 

Further, 

                              (5.17) 

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal 

condition. 

Motional EMF: 

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2. 

 

Fig 5.2 

If a charge Q moves in a magnetic field , it experiences a force 

                                        (5.18) 
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This force will cause the electrons in the conductor to drift towards one end and leave the other end 

positively charged, thus creating a field and charge separation continuous until electric and magnetic 

forces balance and an equilibrium is reached very quickly, the net force on the moving conductor is 

zero. 

 can be interpreted as an induced electric field which is called the motional electric field 

                                   (5.19) 

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit 

is . This emf is called the motional emf. 

A classic example of motional emf is given in Additonal Solved Example No.1 . 

Maxwell's Equation 

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For time 

varying case, the relationship among the field vectors written as 

                  (5.20a) 

                        (5.20b) 

                           (5.20c) 

                            (5.20d) 

In addition, from the principle of conservation of charges we get the equation of continuity  

 

                                                                                        (5.21)  

The equation 5.20 (a) - (d) must be consistent with equation (5.21). 

We observe that 

                                (5.22) 

Since  is zero for any vector .  

Thus  applies only for the static case i.e., for the scenario when . 

A classic example for this is given below . 
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Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 

    Fig 5.3 

Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the total current 

passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes 

through this surface and hence Ienc = 0. But for non steady currents such as this one, the concept of 

current enclosed by a loop is ill-defined since it depends on what surface you use. In fact Ampere's 

Law should also hold true for time varying case as well, then comes the idea of displacement current 

which will be introduced in the next few slides. 

We can write for time varying case, 

 

                                                                                                       (5.23) 

                        (5.24) 

The equation (5.24) is valid for static as well as for time varying case. 

Equation (5.24) indicates that a time varying electric field will give rise to a magnetic field even in 

the absence of . The term  has a dimension of current densities  and is called the 

displacement current density. 

Introduction of  in  equation is one of the major contributions of Jame's Clerk Maxwell. 

The modified set of equations 

                             (5.25a) 
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                         (5.25b) 

                                  (5.25c) 

                                 (5.25d) 

is known as the Maxwell's equation and this set of equations apply in the time varying scenario, 

static fields are being a particular case . 

In the integral form 

                                               (5.26a) 

              (5.26b) 

                                 (5.26c) 

                             (5.26d) 

The modification of Ampere's law by Maxwell has led to the development of a unified 

electromagnetic field theory. By introducing the displacement current term, Maxwell could predict 

the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz 

experimentally which led to the new era of radio communication. 
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