Refrigeration cycle

Objectives

- Know basic of refrigeration
- Able to analyze the efficiency of refrigeration system

contents

- Ideal Vapor-Compression Refrigeration Cycle
- Actual Vapor-Compression Refrigeration Cycle
- Cascade refrigeration systems
- Multistage compression refrigeration systems

Refrigeration cycle

Refrigeration is the transfer of heat from a lower temperature region to a higher temperature region

Refrigeration cycle is the vapor-compression refrigeration cycle, where the refrigerant is vaporized and condenses alternately and is compressed in the vapor phase.

Refrigerator and Heat Pump

- Cyclic refrigeration device operating between two constant temperature reservoirs.
- In the Carnot cycle heat transfers take place at constant temperature.
- If our interest is the **cooling load**, the cycle is called the Carnot **refrigerator**.
- If our interest is the heat load, the cycle is called the Carnot heat pump.

Refrigerator & Heat pump

□ **Refrigerator:** is used to maintain the refrigerated space at a low temperature by removing heat from it

$$COP_R = \frac{\text{Cooling effect}}{\text{Work input}} = \frac{Q_L}{W_{net,in}}$$

Heat pump: heat transfers from a low-temperature medium to a high temperature medium

$$COP_{HP} = \frac{\text{Heating effect}}{\text{Work input}} = \frac{Q_H}{W_{net,in}}$$

$$COP_{HP} = COP_{R} +$$

Carnot refrigerator or a Carnot heat pump

The reversed Carnot cycle is the most efficient refrigeration cycle operating between two specified temperature levels.

A refrigerator or heat pump that operates on the reversed Carnot cycle is called a *Carnot refrigerator* or a *Carnot heat pump*

The reversed Carnot cycle is not a suitable model for refrigeration cycle!

- Process 2 3 involves the compression of a liquid-vapor mixture, which requires a compressor that will handle two phase.
- Process 4 1 involves the expansion of high-moisture-content refrigerant in a turbine.

Ideal Vapor-Compression Refrigeration Cycle

Process	Description
---------	-------------

- 1-2 Isentropic compression
- 2-3 Constant pressure heat rejection in the condenser
- 3-4 Throttling in an expansion valve
- 4-1 Constant pressure heat addition in the evaporator

Energy analysis

From 1st and 2nd Law analysis for steady flow

Component	Process	First law results
Compressor	s = const.	$\dot{W}_{in}=\dot{m}(h_2-h_1)$
Condenser	P = const.	$\dot{Q}_{H}=\dot{m}(h_{2}-h_{3})$
Throttle valve	$\Delta s > 0$	$h_4 = h_3$
	$\dot{W}_{net} = 0$	
	$\dot{Q}_{nat} = 0$	
Evaporator	P = const.	$\dot{Q}_L = \dot{m} (h_1 - h_4)$

Example

Refrigerant-134a is the working fluid in an ideal compression refrigeration cycle. The refrigerant leaves the evaporator at -20°C and has a condenser pressure of 0.9 MPa. The mass flow rate is 3 kg/min. Find COP_R and COP_{R, Carnot} for the same T_{max} and T_{min} , and the tons of refrigeration.

Use the Refrigerant-134a Tables State 1 Compressor inlet $T_1 = -20^{\circ} C$ $x_1 = 1.0$ $T_1 = 0.9456 \frac{kJ}{kg \cdot K}$ $T_1 = 0.9456 \frac{kJ}{kg \cdot K}$

State 2 Compressor exit $P_{2s} = P_2 = 900 \, kPa$ $s_{2s} = s_1 = 0.9456 \frac{kJ}{kg \cdot K}$ $\begin{cases} h_{2s} = 278.23 \frac{kJ}{kg} \\ T_{2s} = 43.79^{\circ} C \quad \mathbf{T} \end{cases}$ Saturated liquid State 3 Condenser exit $\begin{cases} h_3 = 101.61 \frac{kJ}{kg} \\ h_3 = 900 \, kPa \\ x_3 = 0.0 \end{cases}$ $\begin{cases} h_3 = 101.61 \frac{kJ}{kg} \\ s_3 = 0.3738 \frac{kJ}{kg \cdot K} \end{cases}$

State 4 Throttle exit $T_{4} = T_{1} = -20^{\circ} C$ $\begin{cases} x_{4} = 0.358 \\ s_{4} = 0.4053 \frac{kJ}{kg \cdot K} \\ h_{4} = h_{3} \end{cases}$

$$COP_{R} = \frac{\dot{Q}_{L}}{\dot{W}_{net,in}} = \frac{\dot{m}(h_{1} - h_{4})}{\dot{m}(h_{2} - h_{1})} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}} \qquad \mathbf{T}$$

$$= \frac{(238.41 - 101.61)\frac{kJ}{kg}}{(278.23 - 238.41)\frac{kJ}{kg}}$$

$$= 3.44$$

S

The tons of refrigeration (often called the cooling load or refrigeration effect)

$$\dot{Q}_{L} = \dot{m}(h_{1} - h_{4})$$

$$= 3 \frac{kg}{\min} (238.41 - 101.61) \frac{kJ}{kg} \frac{1Ton}{2111 \frac{kJ}{\min}}$$

$$= 1.94Ton$$

S

Another measure of the effectiveness of the refrigeration cycle is how much input power to the compressor, in horsepower, is required for each ton of cooling.

The unit conversion is 4.715 hp per ton of cooling.

$$\frac{\dot{W}_{net, in}}{\dot{Q}_L} = \frac{4.715}{COP_R} = \frac{4.715}{3.44} \frac{hp}{Ton} = 1.37 \frac{hp}{Ton}$$