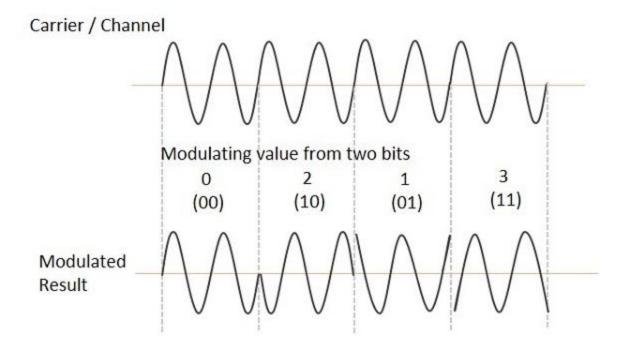
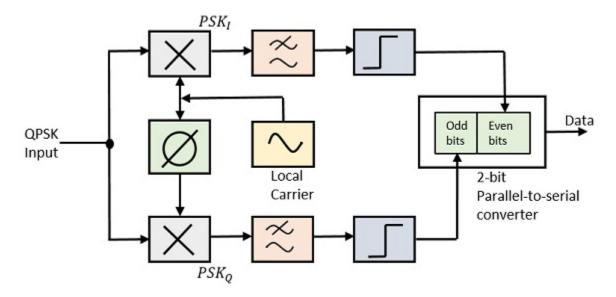

QUADRATURE PHASE SHIFT KEYING

The **Quadrature Phase Shift Keying** QPSK is a variation of BPSK, and it is also a Double Side Band Suppressed Carrier DSBSC modulation scheme, which sends two bits of digital information at a time, called as **bigits**.

Instead of the conversion of digital bits into a series of digital stream, it converts them into bit pairs. This decreases the data bit rate to half, which allows space for the other users.


QPSK Modulator

The QPSK Modulator uses a bit-splitter, two multipliers with local oscillator, a 2-bit serial to parallel converter, and a summer circuit. Following is the block diagram for the same.


At the modulator's input, the message signal's even bits (i.e., 2^{nd} bit, 4^{th} bit, 6^{th} bit, etc.) and odd bits (i.e., 1st bit, 3^{rd} bit, 5^{th} bit, etc.) are separated by the bits splitter and are multiplied with the same carrier to generate odd BPSK (called as PSK_1) and even BPSK (called as PSK_2). The PSK_2 signal is anyhow phase shifted by 90° before being modulated.

The QPSK waveform for two-bits input is as follows, which shows the modulated result for different instances of binary inputs.

QPSK Demodulator

The QPSK Demodulator uses two product demodulator circuits with local oscillator, two band pass filters, two integrator circuits, and a 2-bit parallel to serial converter. Following is the diagram for the same.

The two product detectors at the input of demodulator simultaneously demodulate the two BPSK signals. The pair of bits are recovered here from the original data. These signals after processing, are passed to the parallel to serial converter.