
Unboxing
• Unboxing is a mechanism in which reference type is converted into value.
• It is explicit conversion process.
Example

int i, j;
object obj;
string s;
i = 32;

obj = i; // boxed copy!
i = 19;
j = (int) obj; // unboxed!
s = j.ToString(); // boxed!
s = 99.ToString(); // boxed!

Difference Between Int32.Parse(), Convert.ToInt32(), and Int32.TryParse(),(int)
Int32.Parse (string s) method converts the string representation of a number to its 32-bit
signed integer equivalent.

– When s is a null reference, it will throw ArgumentNullException.
– If s is other than integer value, it will throw FormatException.
– When s represents a number less than MinValue or greater than MaxValue, it will

throw OverflowException.

• (int) will only convert types that can be represented as an integer (ie double, long,

float, etc) although some data loss may occur.

• string s1 = "1234";
• string s2 = "1234.65";
• string s3 = null;
• string s4 =123456789123456789123456789123456789123456789";
• int result;
• bool success;
• result = Int32.Parse(s1); //-- 1234
• result = Int32.Parse(s2); //-- FormatException
• result = Int32.Parse(s3); //-- ArgumentNullException
• result = Int32.Parse(s4); //-- OverflowException
Convert.ToInt32(string):This method converts the specified string representation of 32-

bit signed integer equivalent. This calls in turn Int32.Parse () method.
– When s is a null reference, it will return 0 rather than

throw ArgumentNullException.

– If s is other than integer value, it will throwFormatException.
– When s represents a number less than MinValue or greater than MaxValue, it will

throw OverflowException. For example:

• result = Convert.ToInt32(s1); //-- 1234
• result = Convert.ToInt32(s2); //-- FormatException
• result = Convert.ToInt32(s3); //-- 0
• result = Convert.ToInt32(s4); //-- OverflowException

Int32.TryParse(string, out int): This method converts the specified string representation of

32-bit signed integer equivalent to out variable, and returns true if it is parsed

successfully, false otherwise.

52

– When s is a null reference, it will return 0 rather than

throwArgumentNullException.

– If s is other than an integer value, the out variable will have 0 rather

thanFormatException.

– When s represents a number less than MinValue or greater than MaxValue,

the outvariable will have 0 rather than OverflowException.

– success = Int32.TryParse(s1, out result); //-- success => true; result => 1234
• success = Int32.TryParse(s2, out result); //-- success => false; result => 0
• success = Int32.TryParse(s3, out result); //-- success => false; result => 0
• success = Int32.TryParse(s4, out result); //-- success => false; result => 0
• Convert.ToInt32 is better than Int32.Parse since it returns 0 rather than an exception.

But again, according to the requirement, this can be used. TryParse will be the best

since it always handles exceptions by itself.

53

Unit-III
C# Using Libraries

3.1 Namespace- System
System Namespace in fundamental namespace for c# application. It contain all the fundamental
classes and base classes which are required in simple C# application. These classes and sub
classes defines reference data type, method and interfaces. Some classes provide some other
feature like data type conversion, mathematical function.
Some functionality provided by System namespace

 Commonly-used value
 Mathematics
 Remote and local program invocation
 Application environment management
 Reference data types
 Events and event handlers
 Interfaces Attributes Processing exceptions
 Data type conversion

 Method parameter manipulation
Some Classes provide by System namespace

 AccessViolationException
 Array
 ArgumentNullException
 AttributeUsageAttribute
 Buffer
 Console
 Convert
 Delegate
 Exception

 InvalidCastException
Some interfaces provided by System namespace

 Public interface ICloneable
 Public interface IComparable
 Public interface IComparable<T>
 Public interface IConvertible
 Public interface ICustomFormatter
 Public interface IDisposable
 Public interface IEquatable<T>
 Public interface

IFormatProvider MATH EXAMPLE
using System; class

Pythagorean { static

void Main() {

double s1;
double s2;

double hypot;

string str;
Console.WriteLine("Enter length of first side:
"); str = Console.ReadLine();
s1 = Double.Parse(str);

Console.WriteLine("Enter length of second side: ");

54

str = Console.ReadLine();

s2 = Double.Parse(str);
hypot = Math.Sqrt(s1*s1 + s2*s2);

Console.WriteLine("Hypotenuse is " + hypot);
}
}

Sorting and Searching,Reverse,Copy Arrays
Using Sort(), you can sort an entire array, a range within an array, or a pair of arrays that contain
corresponding key/value pairs. Once an array has been sorted, you can efficiently search it using

BinarySearch().

using System; class

SortDemo { static

void Main() {
int[] nums = { 5, 4, 6, 3, 14, 9, 8, 17, 1, 24, -1, 0
}; Console.Write("Original order: ");
foreach(int i in nums)
Console.Write(i + " "); Console.WriteLine();
Array.Sort(nums);
Console.Write("Sorted order: ");
foreach(int i in nums)
Console.Write(i + " "); Console.WriteLine();
int idx = Array.BinarySearch(nums, 14);

Console.WriteLine("Index of 14 is " + idx); } }

The IComparable and IComparable<T> Interfaces

• Many classes will need to implement either the IComparable or IComparable<T>

interface because they enable one object to be compared to another (for the purpose of
ordering) by various methods defined by the .NET Framework

• IComparable is especially easy to implement because it consists of just this one
method:

• int CompareTo(object obj)

• This method compares the invoking object against the value in obj. It returns greater than
zero if the invoking object is greater than obj, zero if the two objects are equal, and less
than zero if the invoking object is less than obj.

StringBuilder in C#
Once created a string cannot be changed. A StringBuilder can be changed as many times as
necessary. It yields astonishing performance improvements. It eliminates millions of string
copies. Many C# programs append or replace strings in loops. There the StringBuilder type
becomes a necessary optimization. It uses the new keyword for StringBuilder. Use the new
keyword to make your StringBuilder. This is different from regular strings. StringBuilder has
many overloaded constructors. continuing on it calls the instance Append method. This method
adds the contents of its arguments to the buffer in the StringBuilder. Every argument to
StringBuilder will automatically have its ToString method called. It calls AppendLine, which
does the exact same thing as Append, except with a new line on the end. Next, Append and
Append Line call themselves. This shows terse syntax with StringBuilder. Finally ToString
returns the buffer. You will almost always want ToString. It will return the contents as a string.

55

Example

using System;
using System.Text;

class Program
{

static void Main()
{

StringBuilder builder = new StringBuilder();

// Append to StringBuilder.
for (int i = 0; i < 10; i++)
{

builder.Append(i).Append(" ");
}
Console.WriteLine(builder);

}
}

3.2 Input-Output
C# programs perform I/O through streams. A stream is an abstraction that either produces or
consumes information. A stream is linked to a physical device by the I/O system. All streams
behave in the same manner, even if the actual physical devices they are linked to differ. Thus,
the I/O classes and methods can be applied to many types of devices. For example, the same
methods that you use to write to the console can also be used to write to a disk file.

Byte Streams and Character Streams
At the lowest level, all C# I/O operates on bytes. This makes sense because many devices are
byte oriented when it comes to I/O operations. Frequently, though, we humans prefer to
communicate using characters. Recall that in C#, char is a 16-bit type, and byte is an 8-bit type.
If you are using the ASCII character set, then it is easy to convert between char and byte; just
ignore the high-order byte of the char value. But this won‘t work for the rest of the Unicode
characters, which need both bytes (and possibly more). Thus, byte streams are not perfectly
suited to handling character-based I/O. To solve this problem, the .NET Framework defines
several classes that convert a byte stream into a character stream, handling the translation of
byte-to-char and char-to-byte for you automatically.
The Predefined Streams
Three predefined streams, which are exposed by the properties called Console.In, Console.Out,
and Console.Error, are available to all programs that use the System namespace. Console.Out
refers to the standard output stream. By default, this is the console. When you call
Console.WriteLine(), for example, it automatically sends information to Console.Out.
Console.In refers to standard input, which is, by default, the keyboard. Console.Error refers to

the standard error stream, which is also the console by default. However, these streams can be
redirected to any compatible I/O device. The standard streams are character streams. Thus, these
streams read and write characters.

System.IO Namespace

– BinaryReader Class: Reads primitive data types as binary values in a specific encoding.
– BinaryWriter Class : Writes primitive types in binary to a stream and supports writing

strings in a specific encoding.
– BufferedStream Class : Adds a buffering layer to read and write operations on another

stream. This class cannot be inherited.

56

– Directory Class: Exposes static methods for creating, moving, and enumerating through

directories and subdirectories. This class cannot be inherited.
– DirectoryInfo Class: Exposes instance methods for creating, moving, and enumerating

through directories and subdirectories. This class cannot be inherited.
– File Class:Provides static methods for the creation, copying, deletion, moving, and opening

of files, and aids in the creation of FileStream objects.
– FileInfo :Provides properties and instance methods for the creation, copying, deletion,

moving, and opening of files, and aids in the creation of FileStream objects. This class
cannot be inherited.

– FileStream: Exposes a Stream around a file, supporting both synchronous and
asynchronous read and write operations.

– IOException Class
– Path Class
– Stream Class: Provides a generic view of a sequence of bytes.
– StreamReader: Implements a TextReader that reads characters from a byte stream in a

particular encoding.
– StreamWriter : Implements a TextWriter for writing characters to a stream in a particular

encoding.
– StringReader :Implements a TextReader that reads from a string.
– StringWriter: Implements a TextWriter for writing information to a string. The

information is stored in an underlying StringBuilder.
– TextReader: Represents a reader that can read a sequential series of characters.
– TextWriter:Represents a writer that can write a sequential series of characters. This class

is abstract.
–

Creating and writing text on a File
namespace IOTest{
class Program {

static void Main(string[] args) {
StreamWriter sw;

sw= File.CreateText("d:/workspace/Hello.txt");
sw.WriteLine("Hello Mca Students This is your basic
IO"); //sw.Flush();
//sw.Close();
Console.WriteLine("Please show the file in d drive ");

} } }

class TextFileWriter {

static void Main(string[] args) {
TextWriter tw = new StreamWriter("date.txt");
tw.WriteLine(DateTime.Now);

tw.Close();
} }

class TextFileReader {
static void Main(string[] args) {

Textreader tr = new StreamReader("date.txt");

Console.WriteLine(tr.ReadLine()); tr.Close();

}
}

57

