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The concepts of stress and strain are essential to design as they characterize the me-
chanical properties of deformable solids. A brief introduction to the concepts along
with a discussion of theories of failure are provided in this chapter. Stress–strain
formulas are given for bars subjected to extension, torsion, and bending.

3.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

A Cross-sectional area (L2)
A0 Original area; shear-related area defined in Fig. 3-29 (L2)
A∗ Area enclosed by middle line of wall of closed thin-walled cross sec-

tion (L2)
b Width (L)



3.2 DEFINITIONS AND TYPES OF STRESS 91

c Distance from centroidal (neutral) axis of beam to outermost fiber (L)
E Modulus of elasticity, Young’s modulus (F/L2)
F Internal force (F)
G Shear modulus (F/L2)
I Moment of inertia of a member about its centroidal (neutral) axis (L4)
J Torsional constant; polar moment of inertia for circular cross sec-

tion (L4)
L Length of element, original length (L)

Ls Total length of middle line of wall of tube cross section (L)
M Bending moment (F L)
p Pressure (F/L2)

pz Distributed loading (F/L)
P Load or axial force (F)
q Shear flow (F/L)
Q First moment of area beyond level where shear stress is to be deter-

mined (L3)
R, r Radius (L)

S = Ze Section modulus of beam, S = I/c (L3)
t Wall thickness (L)

T Torque or twisting moment (F L)
u, v, w Displacements in xy, z directions (L)

V Shear force (F)
γ Shear strain
� Increment of length (L)
ε Normal strain
εt Natural strain or true strain
θ Angle (degree or radian)
ν Poisson’s ratio
σ Normal stress (F/L2)

σm Mean stress (F/L2)
σys Yield stress (F/L2)

τ Shear stress (F/L2)
φ Angular displacement (degree or radian)

3.2 DEFINITIONS AND TYPES OF STRESS

Normally, forces are considered to occur in two forms: surface forces and body
forces. Surface forces are forces distributed over the surface of the body, such as
hydrostatic pressure or the force exerted by one body on another. Body forces are
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Figure 3-1: Stress.

forces distributed throughout the volume of the body, such as gravitational forces,
magnetic forces, or inertial forces for a body in motion. Suppose that a solid is sub-
ject to external surface forces P1, P2, and P3 (Fig. 3-1). If the body were cut, a force
F would be required to maintain equilibrium. The intensity of this force (i.e., the
force per unit area) is defined to be the stress.

The force F will not necessarily be uniformly distributed over the cut. To define
the stress at some point Q in a cut perpendicular to the x axis (Fig. 3-1), suppose that
the resultant contribution of the internal force F on the area element �A at point Q
is �F , and let the components of �F along the x, y, z axes be �Fx , �Fy , �Fz .
Stress components are defined as

σx = lim
�A→0

�Fx

�A
, τxy = lim

�A→0

�Fy

�A
, τxz = lim

�A→0

�Fz

�A
(3.1)

where σx is the normal stress and τxy , τxz are the shear stresses. Normal stress is the
intensity of a force perpendicular to a cut while the shear stresses are parallel to the
plane of the element. Tensile stresses are those normal stresses pulling away from
the cut, while compressive stresses are those pushing against the cut.

3.3 STRESS COMPONENT ANALYSIS

Sign Convention

An element of infinitesimal dimensions isolated from a solid would expose the
stresses shown in Fig. 3-2. The face of an element whose outward normal is directed
along the positive direction of a coordinate axis is defined to be a positive face. A
negative face has its normal in the opposite direction. Stress components are positive
if when acting on a positive face, their corresponding force components are in the
positive coordinate direction. Also, stress components are said to be positive when
their force components act on a negative face in the negative coordinate direction.
Stress components not satisfying these conditions are considered as being negative.

These definitions mean that a normal stress component directed outward from the
plane on which it acts (i.e., tension) is positive, while a normal stress directed toward
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Figure 3-2: Stress components on an element.

the plane on which it acts (i.e., compression) is taken as being negative. Also, a shear
stress is positive if the outward normal of the plane on which it acts and the direction
of the stress are in coordinate directions of the same sign; otherwise it is negative.
The stress components of Fig. 3-2 are positive.

Stress Tensor

In Fig. 3-2, there are three normal stresses components σx , σy , σz , where the single
subscript is the axis along which the normal to the cut lies. There are also six shear
stress components τxy , τyx , τyz , τzy , τzx , τxz , where the first subscript denotes the
axis perpendicular to the plane on which the stress acts and the second provides the
direction of the stress component. For example, the shear stress τxy acts on a plane
normal to the x axis and in a direction parallel to the y axis.

The conditions of equilibrium dictate that shear stresses with the same subscripts
are equal:

τxy = τyx , τxz = τzx , τyz = τzy (3.2)

In matrix form, the stress components appear as
 σx τxy τxz

τyx σy τyz

τzx τzy σz


 (3.3)

This state of stress at a point is called a stress tensor. The stress tensor is a second-
order tensor quantity.

Plane Stress

In the case of plane stress, all stress components (the normal stress and two shear
stress components) associated with a given direction are zero. For example, for a
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thin plate in the yz plane, plane stress corresponds to the x-direction stress compo-
nents σx , τzx , τyx , being zero. For the case of plane stress, the state of stress can be
determined by three stress components. The stress for thin sheets is usually treated
as being in the state of plane stress.

Variation of Normal and Shear Stress in Tension

The bar in Fig. 3-3 is in simple tension. The stresses on planes normal to an axis of
the bar are considered to be uniformly distributed and are equal to P/A0 on cross
sections along the length, except near the applied load, where there may be stress
concentration (Chapter 6). Here A0 is the original cross-sectional area of the bar.
Consider the stress on an inclined face exposed by passing a plane through the bar at
an angle θ , as shown in Fig. 3-4.

Figure 3-3: Axially loaded bar.

Figure 3-4: Stress on a cross section.

The stress acting in the x direction on the inclined face is σax = P/(A0/ cos θ),
where A0/ cos θ is the inclined cross-sectional area. This stress can be resolved in
terms of the components σN and τ as though a force were being resolved since these
stresses all act on the same unit of area. These relationships are as follows:

normal stress = σN = P cos θ

A0/ cos θ
= P

A0
cos2 θ (3.4)

shear stress = τ = P sin θ

A0/ cos θ
= P

A0
sin θ cos θ (3.5)
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Figure 3-5: Variation of stress with the angle of a plane.

From Eqs. (3.4) and (3.5),

σN

P/A0
= σN

σa
= cos2 θ (3.6)

τ

P/A0
= τ

σa
= sin θ cos θ (3.7)

where σa is the axial tensile stress on the section normal to the x axis. Equations (3.6)
and (3.7) are plotted in Fig. 3-5. Note that the shear stress is a maximum at 45◦, as
shown at point M, and that it equals half the maximum tensile stress.

Stress at an Arbitrary Orientation for the Two-Dimensional Case

Consider an element removed from a body subjected to an arbitrary loading in the xy
plane (Fig. 3-6a). The stresses σx , σy , τxy will occur for the orientation of Fig. 3-6b.
Once the state of stress is determined for an element with a particular orientation
(such as σx , σy , τxy of Fig. 3-6b), the state of stress σx ′ , σy′ , and τx ′ y′ at that location
for an element in any orientation (Fig. 3-6c, d) can be obtained using the following
transformation equations for plane stresses:

σx ′ = 1
2 (σx + σy) + 1

2 (σx − σy) cos 2θ + τxy sin 2θ (3.8a)

σy′ = 1
2 (σx + σy) − 1

2 (σx − σy) cos 2θ − τxy sin 2θ (3.8b)

τx ′ y′ = − 1
2 (σx − σy) sin 2θ + τxy cos 2θ (3.8c)

Note that it can be found from the equations above that

σx ′ + σy′ = σx + σy (3.9)
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Figure 3-6: (a) Object under load; (b) element at point A; (c) element with diagonal at point
A, taken from (b); (d) element at point A [this can replace the element of (c)].

This shows that the sum of the normal stresses is an invariant quantity, independent
of the orientation of the element at the point in question.

Example 3.1 State of Stress The state of stress of an element loaded in the xy
plane is σx = 9000 psi, σy = 3000 psi, and τxy = 2000 psi, as shown in Fig. 3-7a.
Determine the stresses on the element rotated through an angle of 45◦.

The state of stress desired can be found by substituting the given values of stresses
σy , σy , τxy into Eqs. (3.8) with θ = 45◦. The results are σx ′ = 8000 psi, σy′ = 4000
psi, and τx ′ y′ = −3000 psi. This state of stress is shown in Fig. 3-7b.
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Figure 3-7: Two-dimensional state of stress.

Principal Stresses and Maximum Shear Stress for
the Two-Dimensional Case

The maximum value of σx ′ is found by differentiating Eq. (3.8a) with respect to θ :

dσx ′

dθ
= 0 = σx − σy

2
(−2 sin 2θ) + 2τxy cos 2θ (3.10)

from which

tan 2θ1 = 2τxy/(σx − σy) (3.11)

Extreme values of normal stresses occur on the orientations θ = θ1 defined by
Eq. (3.11). The two values of θ1 are 90◦ apart and locate two perpendicular planes of
an element (Fig. 3-8). The maximum normal stress occurs on one of the planes while
the minimum normal stress occurs on the other.

Principal stresses are defined as the algebraically maximum and minimum values
of the normal stresses, and the planes on which they act are called principal planes

Figure 3-8: Orientation of principal planes.
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(Fig. 3-8). From Eq. (3.11), it follows that

sin 2θ1 = ±τxy√[
1
2 (σx − σy)

]2 + τ 2
xy

(3.12a)

cos 2θ1 = ± 1
2 (σx − σy)√[

1
2 (σx − σy)

]2 + τ 2
xy

(3.12b)

Substitution of Eqs. (3.12a) and (3.12b) into Eqs. (3.8a) and (3.8b) gives

Algebraic maximum normal stress: σ1 = 1
2 (σx + σy)

+
√

1
4

[
(σx − σy)2

] + τ 2
xy (3.13a)

Algebraic minimum normal stress: σ2 = 1
2 (σx + σy)

−
√

1
4

[
(σx − σy)2

] + τ 2
xy (3.13b)

Substitution of Eq. (3.11) into Eq. (3.8c) leads to τx ′ y′ = 0. That is, the shear stress
is always zero on the principal planes.

The original stressed element can be used to determine which value of θ1 for
the orientation of principal planes corresponds to σ1 and which to σ2. Define the
diagonal of a stressed element that passes between the heads of the arrows for the
shear stresses as the shear diagonal. For example, if τxy is negative, it should be
drawn on the element shown in Fig. 3-9, forming the shear diagonal indicated. Then
the direction of σ1 lies in the 45◦ arc between the algebraically larger normal stress
and the shear diagonal.

To find the maximum shear stress, set dτx ′ y′/dθ = 0 and find that

τmax =
√[

1
2 (σx − σy)

]2 + τ 2
xy = 1

2 (σ1 − σ2) (3.14)

x �x
�xy

y

�y

45˚

Shear
Diagonal

If �x > �y then �1 
lies somewhere in
this 45˚  arc.

Figure 3-9: Shear diagonal.
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Figure 3-10: Direction of maximum shear stress: (a) principal stresses; (b) direction of max-
imum shear stresses for the case of (a).

The corresponding values of θ are defined by

tan 2θ2 = − 1
2 (σx − σy)/τxy (3.15)

Comparison of Eqs. (3.15) and (3.11) shows that the planes of maximum shear
stresses lie 45◦ away from the planes of the principal stresses.

The fact that the shear diagonal of the element on which the maximum shear
stress occurs lies in the direction of the σ1 stress (Fig. 3-10) assists in determining
the proper directions of the maximum shear stresses.

On the planes of maximum shear stress, the normal stress is found by substituting
θ2 of Eq. (3.15) into Eqs. (3.8a) and (3.8b). The normal stress on each plane is

σ = 1
2 (σx + σy) (3.16)

Caution must be exercised in using Eq. (3.14) to calculate the maximum shear
stress. There is always a third principal stress, σ3, although it may be equal to zero.
When the three principal stresses are considered, as shown later, there are three cor-
responding shear stresses induced, one of which is the maximum stress.

Example 3.2 Principal Stresses For the element in Fig. 3-7a, find the principal
stresses and planes and the maximum shear stress.

The principal planes are located by using Eq. (3.11):

tan 2θ1 = 2τxy

σx − σy
= (2)(2000)

9000 − 3000
= 0.667

or 2θ1 = 33.7◦ and 180◦ + 33.7◦ = 213.7◦. Hence θ1 is 16.8◦ and 106.9◦. Use of
Eqs. (3.13) gives σ1 = 9605.6 psi and σ2 = 2394.4 psi (Fig. 3-11a). The stress σ1 is
located according to the rule for using the shear diagonal.
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Figure 3-11: (a) Principal stress; (b) maximum shear stress.

The maximum shear stresses are located on planes identified by θ2 of Eq. (3.15).
Thus tan 2θ2 = −(9000 − 3000)/(2 × 2000) = −1.5, or θ2 is −28.2◦ and 61.8◦
(Fig. 3-11b). Note that θ2 can be directly located by the fact that the planes of maxi-
mum shear stress are always 45◦ from the principal planes.

From Eq. (3.14), we obtain τmax = 3605.6 psi. The corresponding normal stress
is, by Eq. (3.16), σ = 6000 psi (Fig. 3.11b).

If σ3 = 0, the actual maximum shear stress of the element is

τmax = (σ1 − σ3)/2 = 9605.6/2 = 4802.8 psi

Mohr’s Circle for a Two-Dimensional State of Stress

A graphical method for representing combined stresses is popularly known as Mohr’s
circle method. As illustrated in Fig. 3-12, the Cartesian coordinate axes represent the
normal and shear stresses so that the coordinates σ , τ of each point on the circumfer-
ence of a circle correspond to the state of stress at an orientation of a stressed element
at a point in a body.

Construction of Mohr’s Circle

For a known two-dimensional state of stress σx , σy , and τxy , Mohr’s circle is drawn
as follows:

1. On a horizontal axis lay off normal stresses with positive stresses to the right,
and on a vertical axis place the shear stresses with positive stresses downward.

2. Find the location of the center of the circle along the σ (horizontal) axis by
calculating 1

2 (σx + σy). Tensile stresses are positive; compressive stresses are
negative. Plot this point.

3. Plot the point σ = σx , τ = τxy . Since the positive τ axis is downward, plot a
positive τxy below the σ axis.
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Figure 3-12: Mohr’s circle for the two-dimensional stress of Fig. 3-6b. This provides the
stresses of Fig. 3-6d for an orientation of θ .

4. Connect, with a straight line, the center of the circle from step 2 with the point
plotted in step 3. This distance is the radius of Mohr’s circle. Using 1

2 (σx +σy)

on the horizontal axis as the center, draw a circle with the radius just calculated.
This is Mohr’s circle.

Use of Mohr’s Circle

Interpret the coordinates of a point on Mohr’s circle as representing the stress com-
ponents σx ′ and τx ′ y′ that act on a plane perpendicular to the x ′ axis (Fig. 3-6d). The
x axis is along the circle radius passing through the plotted point σx , τxy . The angle
θ is measured counterclockwise from the x axis. The magnitudes of the angles on
Mohr’s circle are double those in the physical plane. For example, the stresses σy′ ,
τx ′ y′ , and the y′ axis are found on the circle 180◦ away from σx ′ , τx ′ y′ and the x ′
axis. It should be noted that a special sign convention of shear stress is required to
interpret the τx ′ y′ associated with σy′ . That is, positive shear stress is below the σ

axis for σx while positive shear stress corresponding to σy is above the σ axis. From
Mohr’s circle the following holds:

1. The intersections of the circle with the σ axis are the principal stresses σ1 and
σ2. These values and their angle of orientation θ relative to the x axis can be
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scaled from the diagram or computed from the geometry of the figure. The
shear stresses at these two points are zero.

2. The shear stress τmax occurs at the point of greatest ordinate on Mohr’s circle.
This point has coordinates 1

2 (σx + σy), τmax.

3. The normal and shear stresses on an arbitrary plane for which the normal
makes a counterclockwise angle θ with the x axis (Fig. 3-6d) are found by
measuring a counterclockwise angle 2θ on Mohr’s circle from the x axis and
then determining the coordinates σx ′, τx ′ y′ of the circle at this angle.

Stress Acting on an Arbitrary Plane in Three-Dimensional Systems

The stress components on planes that are perpendicular to the x, y, z axes are shown
in Fig. 3-13, where σN x , σN y , and σNz are stress components on an arbitrary oblique
plane P through point 0 of a member. (In the figure the plane P is shown slightly
removed from point 0.) The direction cosines of normal N with respect to xy, and z
are l, m, and n, respectively.

If the six stress components σx , σy , σz , τxy = τyx , τyz = τzy , τxz = τzx at point
0 are known, the stress components on any oblique plane defined by unit normal
N (l, m, n) can be computed using

σN x = lσx + mτyx + nτzx

σN y = lτxy + mσy + nτzy (3.17)

σNz = lτxz + mτyz + nσz

Normal and Shear Stress on an Oblique Plane

The normal stress σN on the plane P is the sum of the projection of the stress com-
ponents σN x , σN y , and σNz in the direction of normal N . Therefore,

σN = l2σx + m2σy + n2σz + 2mnτyz + 2lnτxz + 2lmτxy (3.18)

Figure 3-13: Stress components σN x , σN y , σNz on arbitrary plane having normal N .
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For a particular plane through point 0, σN reaches a maximum value called the max-
imum principal stress. This maximum value along with other principal stresses are
the solutions of

σ 3 − I1σ
2 + I2σ − I3 = 0 (3.19a)

where

I1 = σx + σy + σz

I2 =
∣∣∣∣σx τxy

τxy σy

∣∣∣∣+
∣∣∣∣σx τxz

τxz σz

∣∣∣∣ +
∣∣∣∣σy τyz

τyz σz

∣∣∣∣
= σxσy + σxσz + σyσz − τ 2

xy − τ 2
xz − τ 2

yz (3.19b)

I3 =
∣∣∣∣∣∣
σx τxy τxz

τxy σy τyz

τxz τyz σz

∣∣∣∣∣∣
The quantities I1, I2, and I3 defined in Eq. (3.19b) are invariants of stress and must
have the same values for all choices of coordinate axes (x, y, z).

The three roots (σ1, σ2, σ3) of Eq. (3.19a) are the three principal stresses at
point 0. The directions of the planes corresponding to the principal stresses, called
the principal planes, can be obtained from the following linear homogeneous equa-
tions in l, m, and n by setting σ in turn equal to σ1, σ2, and σ3 and using the direction
cosine relationship l2 + m2 + n2 = 1:

l(σx − σ) + mτxy + nτxz = 0, lτxz + mτyz + n(σz − σ) = 0 (3.20)

The magnitude of the shear stress τN on plane P is given by

τN =
√

σ 2
N x + σ 2

N y + σ 2
Nz − σ 2

N (3.21)

The maximum value of τN at a point in the body plays an important role in certain
theories of failure. This shear stress is zero on a principal plane.

Generally speaking, in any stressed body, there are always at least three planes on
which the shear stresses are zero; these planes are always mutually perpendicular,
and it is on these planes that the principal stresses act.

Maximum Shear Stress in Three-Dimensional Systems

Equations (3.13) and (3.14) deal with two-dimensional systems of stresses. In fact,
there are always three principal stresses σ1, σ2, σ3, where σ3 is the principal stress
in the third orthogonal direction. In this three-dimensional situation, three relative
maximum shear stresses exist:

τ1 = 1
2 (σ1 − σ2), τ2 = 1

2 (σ1 − σ3), τ3 = 1
2 (σ2 − σ3) (3.22a)
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from which the true maximum shear stress can be chosen. This maximum shear stress
would be

τmax = 1
2 (σmax − σmin) (3.22b)

This, of course, is the maximum value of τN of Eq. (3.21). The three relative maxi-
mum shear stresses lie on planes whose normals form 45◦ angles with the principal
stresses involved.

Usually, σ3 is small or zero in an assumed two-dimensional system of stresses.
Then if σ1 and σ2 are both positive (in tension), comparison of the magnitudes of the
shear stresses in Eqs. (3.22a) indicates that

τmax = 1
2 (σ1 − σ3) ≈ 1

2σ1 (3.23)

would be the true maximum shear stress.

Mohr’s Circle for Three Dimensions

Like Mohr’s circle for the two-dimensional state of stress, the three mutually perpen-
dicular principal stresses can be represented graphically. Figure 3-14 shows Mohr’s
circle representation of the triaxial state of stress defined by the three principal
stresses in Fig. 3-15. For any section in the σ1, σ2 plane (i.e., planes perpendicular to
plane 3) there corresponds a circle B A. In the σ2, σ3 plane (i.e., planes perpendicular
to plane 1) there is a circle C B, and for the σ3, σ1 plane there exists a circle C A.
From Fig. 3-14, σ1 = 0A, σ2 = 0B, σ3 = 0C , and τmax = radius C A = 1

2 (σ1 − σ3).
It can be shown [3.1] that all possible stress conditions for the body fall within

the shaded area between the circles in Fig. 3-14.

Figure 3-14: Mohr’s circle for a three-dimensional state of stress.
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Figure 3-15: Triaxial state of stress.

Mohr’s circles for some common states of stress are given in Table 3-1.

Example 3.3 Mohr’s Circle For the state of stress shown in Fig. 3-16a, using
Mohr’s circle, determine graphically (a) the stress components on the element rotated
through an angle of 45◦, (b) the principal stresses and planes, and (c) the maximum
shear stresses.

First, find the center 0′ of Mohr’s circle on the σ axis by using σ = 1
2 (σx +σy) =

6000 psi, and plot the point Q with coordinates (σ, τ) = (σx , τxy) = (9000, 2000).
Then draw a circle with radius equal to the distance between these two points, 0′Q.
This is measured (or calculated) to be 3605.6 psi.

(a) The stress components on the element rotated through an angle of 45◦ are
represented on Mohr’s circle by rotating 0′Q counterclockwise 2θ = 2 × 45 = 90◦.

Figure 3-16: Example of Mohr’s circle: (a) state of stress; (b) stress components on Mohr’s
circle.
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This identifies the x ′ axis. The intersection M of the x ′ axis (i.e., 0′M) with the circle
gives σx ′ = 8000 psi and τx ′ y′ = −3000 psi. The σy′ stress, which is found 180◦
away from the x ′ axis (0′M), is 4000 psi. Refer to Fig. 3-16b.

(b) σ1 = 0C = 00′ + 0′C = 6000 + 3605.6 = 9605.6 psi, 2θ1 = 33.6◦
or θ1 = 16.8◦

σ2 = 0B = 00′ − 0′B = 6000 − 3605.6 = 2394.4 psi

θ1 = 90◦ + 16.8◦ = 106.8◦

σ3 = 0
(c) For a section in the σ1, σ2 plane, the maximum shear stresses occur on the

vertical through the center of the circle (i.e., 0′ P). We measure 0′ P = τmax = 3605.6
psi and 2θ2 = 123.6◦ or θ2 = 61.8◦. But since σ3 = 0, the actual maximum shear
stress of the element is τmax = 1

2 (σ1 − σ3) = 4802.3 psi.

Octahedral Stress

Suppose that coordinate axes x, y, z are principal axes that are perpendicular to each
of the principal planes, respectively. In three dimensions there are eight planes (the
octahedral planes) that make equal angles with respect to the x, y, z directions; that
is, the absolute values of the direction cosines of the eight planes are equal, |l| =
|m| = |n| = 1

3

√
3. The normal and shear stress components associated with each

of these planes are called the octahedral normal stress σoct and the octahedral shear
stress τoct.

For this case Eqs. (3.17) and (3.18) become

σN x = 1
3

√
3σ1, σN y = 1

3

√
3σ2, σNz = 1

3

√
3σ3

and

σoct = σN = 1
3σ1 + 1

3σ2 + 1
3σ3 = 1

3 I1 (3.24a)

Substituting σN x , σN y , σNz , and σN into Eq. (3.21) yields

τoct = τN = 1
3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]1/2

= 1
3 (2I 2

1 − 6I2)
1/2 (3.24b)

In general, σx , σy , σz are not principal stresses and τxy , τyz , τzx are not zero. How-
ever, the quantities I1, I2, and I3 are invariant. The quantities σoct and τoct become

σoct = 1
3 I1 = 1

3 (σx + σy + σz) (3.25a)

τoct = 1
3 (2I 2

1 − 6I2)
1/2

= 1
3

[
(σx − σy)

2 + (σx − σz)
2 + (σy − σz)

2 + 6(τ 2
xy + τ 2

xz + τ 2
yz)

]1/2

(3.25b)
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Mean and Deviator Stress

The mean stress σm is defined by

σm = 1
3 (σx + σy + σz) = 1

3 (σ1 + σ2 + σ3) = 1
3 I1 (3.26)

It is often contended that yielding and plastic deformation of some metals are
basically independent of the applied normal mean stress σm . As a consequence, it is
useful to separate σm from the other stresses so that the stress tensor [Eq. (3.3)] is
expressed in terms of the mean and deviator stress

T = Tm + Td (3.27a)

where

T =

 σx τxy τxz

τyx σy τyz

τzx τzy σz


 ,

Tm =

σm 0 0

0 σm 0
0 0 σm




and

Td =

 1

3 (2σx − σy − σz) τxy τxz

τxy
1
3 (2σy − σx − σz) τyz

τxz τyz
1
3 (2σz − σy − σx )




=

 Sx Sxy Sxz

Syx Sy Syz
Szx Szy Sz


 (3.27b)

The matrix Tm is referred to as the mean stress tensor and the matrix Td the
deviator stress tensor. The components Si j of Td are called the deviator stresses. For
stress tensor T , the invariants of stress, I1, I2, and I3, are defined in Eq. (3.19b).
Similarly, for tensors Tm, Td , the quantities I1m, I1d , I2m, I2d , and I3m, I3d can also
be defined. The stress invariants for principal axes x, y, z are as follows:

I1m = I1 = 3σm, I2m = 1
3 I 2

1 = 3σ 2
m, I3m = 1

27 I 3
1 = σ 3

m (for Tm) (3.28a)

I1d = 0
I2d = I2 − 1

3 I 2
1 = ( − 1

6

) [
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

I3d = I3 − 1
3 I1 I2 + 2

27 I 3
1

= 1
27 (2σ1 − σ2 − σ3)(2σ2 − σ3 − σ1)(2σ3 − σ1 − σ2)




(for Td )

(3.28b)
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The principal values of the deviator stresses are

S1 = σ1 − σm = 1
3 [(σ1 − σ3) + (σ1 − σ2)]

S2 = σ2 − σm = 1
3 [(σ2 − σ3) + (σ2 − σ1)] (3.29a)

S3 = σ3 − σm = 1
3 [(σ3 − σ1) + (σ3 − σ2)]

It is apparent that

S1 + S2 + S3 = 0 (3.29b)

The deviator stresses are sometimes used in theories of failure and in the theory
of plasticity.

3.4 RELATIONSHIP BETWEEN STRESS AND INTERNAL FORCES

Both stress components and internal-force components are used to describe the state
of the internal action of a solid. They are related in the sense that the internal forces
are the resultant or total stresses. These are often referred to as stress resultants.
Comparison of Fig. 3-17a and b for a bar cut perpendicular to the x axis leads to the
following relationships:

Fx = P =
∫

A
σx dA (3.30a)

Vy =
∫

A
τxy dA (3.30b)

V = Vz =
∫

A
τxz dA (3.30c)

Mx = T =
∫

A
τxz y dA −

∫
A

τxyz dA (3.30d)

x

�x� xy

z

y

(b)

� xz

Figure 3-17: Internal forces and stresses.
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M = My =
∫

A
σx z dA (3.30e)

Mz = −
∫

A
σx y dA (3.30f)

Average Shear Stress

The force acting on a plane cut in a body is called a shear force. Often an approx-
imation for the stress acting on the plane is obtained by dividing the shear force by
the area over which it acts. Thus,

τ = force

area
= V

A
(3.31)

where τ is the shear stress, V the total force acting across and parallel to a cut plane,
and A the cross-sectional area for the cut. This approximation, which is based on the
assumption of a uniform distribution of stress, is called the average shear stress.

3.5 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

For equilibrium to exist throughout a solid for two-dimensional problems, the fol-
lowing differential equations must be satisfied:

∂σx

∂x
+ ∂τxy

∂y
+ px = 0,

∂τyx

∂x
+ ∂σy

∂y
+ py = 0 (3.32a)

In the case of three-dimensional stress, the equations above become

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ px = 0 (3.32b)

∂τyx

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ py = 0 (3.32c)

∂τzx

∂x
+ ∂τzy

∂y
+ ∂σz

∂z
+ pz = 0 (3.32d)

where px , py , and pz represent body forces per unit volume, such as those generated
by weight or magnetic effects.

3.6 ALLOWABLE STRESS

Either in analyzing an existing structure or in designing a new structure, it is very
important to know what constitutes a “safe” stress level. The ability of a member
to resist failure is limited to a certain level. A prescribed stress level that is not to
be exceeded when a member is subjected to the expected load is the allowable or
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working stress. The allowable stress is sometimes based on the stress level at the
transition between elastic and nonelastic material behavior (i.e., yield stress). It may
also be based on the occurrence of fracture (rupture) or the highest or ultimate stress
that can occur in a member. In most cases the allowable stress is calculated to be
lower than the yield or ultimate stress, the reduction being determined by a factor of
safety. Values of allowable stress are established by local and federal agencies and
by technical organizations such as the American Society of Mechanical Engineers
(ASME).

3.7 RESIDUAL STRESS

Residual stress (or lockup stress, initial stress) [3.3–3.7] is defined as that stress
that is internal or locked into a part or assembly even though the part or assembly
is free from external forces or thermal gradients. Such residual stress, whether in
an individual part or in an assembly of parts, can result from a mismatch or misfit
between adjacent regions of the same part or assembly.

It is often important to consider residual stresses in failure analysis and design,
although residual stresses tend to be difficult to visualize, measure, and calculate
[3.8]. Residual stresses are three-dimensional, self-balanced systems that need not
be harmful. In fact, it may be desirable to have high compressive residual stress at
the surface of parts subject to fatigue or stress corrosion.

3.8 DEFINITION OF STRAIN

Strain can be defined in terms of normal and shear strain. Normal strain is defined as
the change in length per unit length of a line segment in the direction under consid-
eration. Normal strain is a dimensionless quantity denoted by εi , where the subscript
i indicates the direction. Normal strain is taken as positive when the line segment
elongates and negative when the line segment contracts. For the member in Fig. 3-18
with uniaxial stress,

εx = 2�

2L
= �

L
= L f − L

L
, εy = −2�h

2h
= −�h

h
= h f − h

h
(3.33)

where 2L and 2h are the original dimensions and 2L f and 2h f are the postdeforma-
tion dimensions.

Shear strain is defined as the tangent of the change in angle of a right angle in
a member undergoing deformation. It is a dimensionless quantity. The symbol for
the strain is γi j , where the subscripts have meanings similar to the subscripts for
shear stress. For the small shear strains encountered in most engineering practice
(usually less than 0.001), the tangent of the change in angle is very nearly equal to
the angle change in radians. Positive shear strains are associated with positive shear
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Figure 3-18: Elongation of an element.

stresses (Fig. 3-19a); negative shear strains correspond to negative shear stresses
(Fig. 3-19b). Refer to the x ′, y′ axes of Fig. 3-18. If this member is lengthened and
thinned, A and B will move to new positions A′ and B ′. Angle A′0B ′ is now less
than 90◦. The tangent of the total change in angle is the shear strain.

Another useful definition of strain is the change in length divided by the instanta-
neous value of the length (rather than the original length):

εt =
∫ L f

L

d�

�
= ln

L f

L
(3.34)

where εt is referred to as the natural (or true) strain. The concept of true strain is
very useful in handling problems in plasticity and metal forming. For the very small
strains for which the equations of linear elasticity are valid, the two types of strains
(strain and true strain) give almost the same values.

Figure 3-19: Shear strain sign.
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3.9 RELATIONSHIP BETWEEN STRAIN AND DISPLACEMENT

In general, the state of strain at a point in a body is determined by six strains, εx ,
εy , εz , γyx , γxz , and γyz , arranged in the same fashion as stresses. These components
can be assembled into a strain tensor similar to the stress tensor.

If u, v, and w are three displacement components at a point in a body for the xy,
and z directions of coordinate axes, small strains are related to the displacements
through the geometric relationships

εx = ∂u

∂x
, γxy = ∂u

∂y
+ ∂v

∂x
= γyx

εy = ∂v

∂y
, γxz = ∂u

∂z
+ ∂w

∂x
= γzx (3.35)

εz = ∂w

∂z
, γyz = ∂v

∂z
+ ∂w

∂y
= γzy

In the case of plane strain (zero strains in the z direction, i.e., εz = γxz = γyz =
0), the foregoing equations become

εx = ∂u

∂x
, εy = ∂v

∂y
, γxy = ∂u

∂y
+ ∂v

∂x
= γyx (3.36)

It can be shown that to assure unique continuous displacements, the strains cannot
be independent. For example, the compatibility condition

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y
(3.37)

must hold. That is, the three strains of Eq. (3.36) must satisfy Eq. (3.37) to assure
that the two displacements u, v are single valued and continuous.

3.10 ANALYSIS OF STRAIN

The strain components possess the same sort of tensor characteristics as the stress
components. Hence, strains follow the same rules as stresses when axes are rotated.
There are principal axes for strain, and a Mohr’s circle for strain can be used to
evaluate strain components at various orientations. The only difference is that the
vertical axis is 1

2γ rather than τ , which is used with Mohr’s circle of stress. Therefore,
the normal strain εN at a point in the direction of N that makes a counterclockwise
angle θN with the x axis is

εN = εx cos2 θN + εy sin2 θN + γxy sin θN cos θN (3.38)
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In strain measurement, the majority of problems are two-dimensional. The ex-
tensions (or normal strain) in one or more directions are the quantities most often
measured.

3.11 ELASTIC STRESS–STRAIN RELATIONS

Poisson’s Ratio

For a bar of elastic material having the same mechanical properties in all directions
and under a condition of uniaxial loading, measurements indicate that the lateral
compressive strain is a fixed fraction of the longitudinal extensional strain. This frac-
tion is known as Poisson’s ratio ν. In the case of the member of Fig. 3-18,

εy = −νεx (3.39)

Like the modulus of elasticity E of the following paragraph, Poisson’s ratio is
a material constant that can be determined experimentally. For metals it is usually
between 0.25 and 0.35. It can be as low as 0.1 for certain concretes and as high as
0.5 for rubber.

Hooke’s Law

The stresses and strains are related to each other by the properties of the material.
Equations of this nature are known as material laws or, in the case of elastic solids,
as Hooke’s law. For a three-dimensional state of stress and strain, Hooke’s law for
isotropic material appears as

εx = (1/E)[σx − ν(σy + σz)]
εy = (1/E)[σy − ν(σx + σz)]
εz = (1/E)[σz − ν(σx + σy)]
τi j = Gγi j (i, j = x, y, z; i �= j)

(3.40)

where E is the modulus of elasticity, ν is Poisson’s ratio, and G is the shear modu-
lus. The dimensions of G and E are force per unit area [e.g., lb/in2 or N/m2 (Pa)].
Typical values of E and ν for some materials are listed in Table 4-3. The bulk mod-
ulus K (also called volumetric modulus of elasticity, modulus of dilation, modulus
of volume expansion, or modulus of compressibility) is a material constant defined
as the ratio of the hydrostatic stress σ1 = σ2 = σ3 (shear stresses are zero) to the
volumetric strain (change in volume divided by the original volume). Of the many
different material constants (e.g., E , ν, G, and K ), only two are independent if the
material is isotropic. Table 3-2 lists the relationships between commonly used mate-
rial constants.
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Figure 3-20: Extension.

3.12 STRESS AND STRAIN IN SIMPLE CONFIGURATIONS

Direct Axial Loading (Extension and Compression)

A typical tension member is shown in Fig. 3-20. It is assumed that the force acts
uniformly over the cross section so that the stress at any point is

σx = P/A (3.41)

As a result of the force P , the bar elongates an amount �. In terms of strain εx along
the bar,

εx = �/L (3.42)

The quantities σx and εx are called engineering stress and strain since they are based
on the original dimensions of the bar.

Using Hooke’s law for the axial fibers, σx = Eεx , Eq. (3.41) becomes

εx = P/E A (3.43)

or

� = P L/AE (3.44)

Frequently, it is convenient to relate the extension of a bar to the extension of a
spring. If the force in the spring of Fig. 3-21a is linearly proportional to its displace-

Figure 3-21: Spring.
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ment (Fig. 3-21b), the constant of proportionality is the spring constant

k = P/� (3.45)

The constant k is also referred to as the stiffness coefficient. The reciprocal of the
stiffness coefficient, 1/k, is the flexibility coefficient.

Example 3.4 Elongation of a Bar A steel bar with a uniform cross section of
1000 mm2 is subject to the uniaxial forces shown in Fig. 3-22a. Calculate the total
elongation of the bar (E = 200 GN/m2).

(a)

100 kN

a b c d

(b)

30 kN 10 kN 60 kN

5 m4 m3 m

c d
60 kN10 kNFbc

Figure 3-22: Bar.

The entire bar is in equilibrium since the sum of the axial forces is zero. The
total elongation is determined by separating the bar into three sections, finding the
elongation of each, and adding these elongations. The conditions of equilibrium give
the internal force in each section. Thus, for Fig. 3-22b,

∑
FH = 0: −Fbc + 10 +

60 = 0 or the internal force Fbc = 70 kN in tension. Similar manipulations give
Fab = 100 kN, Fcd = 60 kN, both in tension. Then from Eq. (3.44),

� = �ab + �bc + �cd = 1

AE
[(F L)ab + (F L)bc + (F L)cd]

= (100 kN)(3 m) + (70 kN)(4 m) + (60 kN)(5 m)

(1000 mm2)(200 GN/m2)
(1)

= 4.4 × 10−3 m = 4.4 mm

There are some differences between compression and tension. First, in compres-
sion, instability failure by buckling may occur depending on the geometry, especially
the length. Second, for ductile materials, there is no apparent ultimate strength in
compression.
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Figure 3-23: Examples of shear: (a) single shear; (b) double shear; (c) punch on a plate.

Direct Shear in Connections

Shear may be considered to be a process whereby parallel planes move relative to one
another. In direct shear, the shear stress can be calculated as an average stress. Some
examples of direct shear are shown in Fig. 3-23. For the configurations in Fig. 3-23a
and b, the shear stresses in the bolts of cross-sectional area A are

Single stress: τ = P

A
= P

πd2/4
= 4P

πd2
(3.46a)

Double stress: τ = P

2A
= P

2πd2/4
= 2P

πd2
(3.46b)

The direct shear in Fig. 3-23c occurs as a punch tries to penetrate a plate. If the punch
diameter is d and the plate thickness is t , the shear stress τ in the plate is

τ = P/A = P/(π dt) (3.46c)

Torsion

For a bar subject to an applied torque (Fig. 3-24), the torsional or shear stresses τ

on a cross section of circular shape, either solid or hollow, are linearly proportional
in magnitude to the distance r from the centroidal axis of the bar. This stress, which
acts normal to the radius, is given by

τ = Tr/J (3.47)
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Figure 3-24: Torsion.

where τ is the shear stress [force per unit area, psi or N/M2 (Pa)], T is the torque
or twisting moment (length × force, in.-lb or N · m), r is the radial distance from
longitudinal axis (length, in. or m), and J is the torsional constant (length to the
fourth power, in4 or mm4) of cross section; if the cross-sectional shape is circular,
J = Ix , the polar moment of inertia about the longitudinal axis.

It can be seen from Eq. (3.47) that the highest stresses occur in the outer edge
fibers:

τmax = Tr0/J (3.48)

where r0 is the radial distance to the outer boundary of the circular cross section.
The shear strain γ for any section of the bar is given by

γ = τ/G = Tr/G J (3.49)

In addition, since at any distance dx from the fixed end of the bar, γ = r dϕ/dx ,
Eq. (3.49) shows that

dφ

dx
= T/G J (3.50a)

which upon integration gives

φ = T L/G J (3.50b)

Torsion of Thin-Walled Shafts and Tubes of Circular Cross Sections
For the thin-walled circular section of Fig. 3-25, if the shear stress is assumed to
be uniformly distributed across the thickness, the equilibrium conditions give
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Figure 3-25: Thin-walled torsion.

T = 2πr2tτ, τ = T/2πr2t (3.51a)

where r is the radius to the midwall.
Since the torsional constant for a thin circular section is approximately J =

2πr3t , the shear stress can be written as

τ = Tr/J (3.51b)

Equation (3.51a) also follows directly from Eq. (3.47). The angle of twist of this
thin-walled circular section is still given by Eq. (3.50b).

Torsion of Thin-Walled Noncircular Tubes For thin-walled noncircular sec-
tions it is assumed that the wall thickness is small compared to the overall dimensions
of the cross section and that the stress is uniform through the wall thickness. Experi-
ments and comparisons with more exact analyses have shown this latter assumption
to be reasonable for most thin-walled sections in the elastic range.

The formulas for thin-walled tubes (Fig. 3-26) are

q = T/2A∗ (3.52a)

φ = T L

G J
or

dφ

dx
= T

G J
(3.52b)

q = τ t (3.52c)

where q is the shear flow, A∗ is the area enclosed by the middle line of the wall, and
J is the torsional constant.

For constant t , Eq. (3.52b) becomes

dφ

dx
= τ S

2A∗G
= T S

4A∗2Gt
(3.53)

where S is the total length of the middle line of the wall of the cross section.
Note that although the shear flow q from Eq. (3.52a) is constant around the wall,

the shear stress τ = q/t of Eq. (3.52c) can vary with t . The largest shear stress occurs
where the wall is thinnest, and vice versa. Also note that no distinction is made by
Eq. (3.52a) between different cross-sectional shapes. According to this formula, all
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Figure 3-26: Thin-walled tube.

cross-sectional geometries with the same enclosed area A∗ will experience the same
shear flow for the same torque T . Equations (3.52) and (3.53) are simple to apply
and quite accurate for thin-walled closed sections of arbitrary cross-sectional shape.
Chapters 2 and 12 provide formulas for various cross-sectional shapes, including
multicell thin-walled beams.

If the walls of the hollow shaft are very thin, the possibility of buckling should be
considered. Thus, a shaft safe from the standpoint of yield stress level may well be
unstable.

A Useful Relation between Power, Speed of Rotation, and Torque
Power is the measure of work developed per unit time. The work done by a torque
T during one revolution of a shaft is 2πT . For a shaft rotating at n revolutions per
minute (rpm), the work done per minute is 2πT n. In the U.S. Customary System,
the usual unit of power is foot-pounds per second. In engineering work, a larger unit
called horsepower (hp) is often used:

1 hp = 33,000 ft-lb/min (3.54a)

If T is in inch-pounds, the horsepower transmitted is

hp = 2πT n

12(33,000)
= T n

63,000
(3.54b)

For the International System (SI), the unit of power is the watt, W = N · m/s. If
T is in newton-meters,

W = 2πT n

60
(3.54c)
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Figure 3-27: Beam under loading.

Normal and Shear Stress of Beams

When a simple beam bends under vertical downward load, the top fibers shorten the
most and the bottom fibers lengthen the most (Fig. 3-27). Between the top and the
bottom fibers, there exists a layer or surface that remains neutral; neither tension nor
compression is generated in it, although it is curved like the rest of the layers. Hence,
this layer is called the neutral surface. It is assumed that the fiber deformations are
directly proportional to the distance from the neutral surface. This fundamental as-
sumption about the geometry of deformation of a beam is stated as follows: Plane
sections normal to the axis of a beam remain plane as the beam is bent.

The intersection of a cross-sectional plane with the neutral surface is called the
neutral axis (NA). For example, the y axis shown in Fig. 3-27 is the neutral axis of
the cross section. It can be shown that the neutral axis passes through the centroid of
the cross section.

Note the sign convention here. The bending moment M is positive when tensile
stress is on the bottom fiber or the center of curvature is above the beam. Positive z
is taken to be downward.

On a cross section of a linearly elastic beam having the z axis as a vertical axis
of symmetry, the normal stress σx = σ acting on a longitudinal fiber at a distance z
from the neutral axis is given by the flexure formula,

σ = Mz/I (3.55)

Here M is the net internal bending moment at the section and I is the moment of
inertia of the cross section about the neutral axis (y).

The stresses, like the deformations (and strains), vary linearly with the distance
from the neutral axis (Fig. 3-28). The stresses are tensile on one side of the neutral
axis and compressive (negative) on the other side. The maximum stress for a cross
section occurs at the outermost fibers of the beam and is given by

σmax = Mc/I (3.56a)

or

σmax = M/S (3.56b)
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Figure 3-28: Stress distribution on a cross section of a beam.

where c is the distance from the neutral axis to the outermost fiber. The quantity
S = I/c is called the section modulus, which is a geometric property of the cross
section (Chapter 2) and is a measure of the resistance to the development of bending
stress.

If a vertical plane is passed through a transversely loaded beam perpendicular to
the longitudinal axis, the vertical stresses acting along this plane are called shear
stresses. Equilibrium requires that the vertical shear stress τ at any point on the cross
section is numerically equal to the horizontal shear stress at the same point. These
shear stresses, as well as the normal stresses, are assumed to be uniform across the
width of the beam. However, the shear stress varies according to the shape of the
cross section, as shown in Fig. 3-29.

The shear stress τxz = τzx = τ at any point of a prescribed cross section is given
by

τ = V Q/I b (3.57a)

where V is the shear force at the section, Q is a first moment (Chapter 2) with respect
to the neutral axis of the area beyond the point at which the shear stress is desired,

Figure 3-29: Stress distribution on different cross-sectional shapes. A0 is the shaded area.
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I is the moment of inertia about the neutral axis, and b is the width of the section
measured at the level at which τ is being determined.

If the shear stress is to be determined at level z1 of a rectangle cross section, Q
must be calculated for the shaded area A0 of Fig. 3-29a. Equation (2.15a) gives

Q = A0zc = b
(1

2 h − z1
)[

z1 + 1
2

( 1
2 h − z1

)] = 1
2 b
(1

4 h2 − z2
1

)
From Eq. (3.57a), the desired stress is

τ = V

2I

(
h2

4
− z2

1

)
(3.57b)

and

τmax = V h2

8I
= 3

2

V

bh
= 3V

2A
(3.57c)

at the neutral axis (z1 = 0). This equation has been shown to be reasonably accurate
for widths equal to or less than the depth (b ≤ h), but for b > h, Eq. (3.57c)
should be used with caution. Accurate computational solutions have been developed
(Chapter 15).

For a wide-flange I-shaped structural steel, the maximum shear stress given by
Eq. (3.57a) is only slightly greater than the average stress obtained by dividing the
shear force by the area of the web.

A useful formula in the study of a beam formed of more than one layer (e.g., two
boards nailed together), is for the shear flow q. From Eq. (3.57a),

q = τb = V Q/I (3.57d)

This gives the horizontal shear force per unit length of beam that is transmitted be-
tween layers of the beam.

Deflection of Simple Beams

The sign convention for forces and displacements of a beam is shown in Fig. 3-30.
Applied forces and moments are positive if their vectors are in the direction of a
positive coordinate axis. Also, internal shear forces and bending moments acting

Figure 3-30: Positive applied loadings and internal forces.
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on a positive face are positive if their vectors are in positive coordinate directions.
The internal forces M, V and applied loads M1 (concentrated moment, force times
length), pz (loading intensity, force per length), and W (concentrated load, force)
shown in Fig. 3-30 are positive.

Positive deflection w is downward (i.e., in the positive coordinate z direction).
As shown in Fig. 3-30, θ (radians) is the angle between the axis and the tangent
to the curve at a point. Positive and negative θ , which like moments adhere to the
right-hand rule, are illustrated.

The basic differential equation relating the deflection w to the internal bending
moment M in a beam is

d2w

dx2
= − M

E I
(3.58a)

where x is the axial coordinate and E I is the flexural rigidity or bending modulus.
This relationship applies to a beam that is linearly elastic and where the cross section
is symmetric about the xz plane.

For small angles, θ ≈ tan θ = −dw/dx , that is,

dw

dx
= −θ (3.58b)

and Eq. (3.58a) appears as dθ/dx = M/E I . The equilibrium equations relate the
internal forces M and V and the applied loading density pz in the form dV/dx =
−pz , d M/dx = V . If these relations are gathered together,

dw

dx
= −θ,

dθ

dx
= M

E I
,

d M

dx
= V,

dV

dx
= −pz (3.59)

These equations are called governing equations of motion for the bending of a beam.
This first-order form is convenient to handle numerically using a computer. Analyti-
cally, it is frequently easier to deal with the higher-order forms:

For Variable E I For Constant E I

θ = −dw

dx

M = −E I
d2w

dx2

V = d M

dx
= − d

dx

(
E I

d2w

dx2

)

pz = −dV

dx
= d2

dx2

(
E I

d2w

dx2

)

θ = −dw

dx

M = −E I
d2w

dx2

V = −E I
d3w

dx3

pz = E I
d4w

dx4

(3.60)

These relations are found by successive substitution of Eqs. (3.58) into each other.
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Figure 3-31: Cylinder.

Stress in Pressure Vessels

Thin-walled containers or shells loaded with gas or liquid pressure and having the
form of a surface of revolution, such as cylinders and spheres, are discussed in this
section.

Cylinder Stress On the wall of a thin-walled cylinder subjected to internal pres-
sure, two stresses in the plane of the wall are of prime interest (Fig. 3-31). These
stresses, a longitudinal stress σx parallel to the axis of revolution and a hoop or
circumferential or cylindrical stress σθ perpendicular to σx , are called membrane
stresses. If there are no abrupt changes in wall thickness and the wall is thin (thick-
ness less than about one-tenth the radius r), it can be assumed that the stresses are
uniformly distributed through the thickness of the wall and that no other significant
stresses occur. Application of the conditions of equilibrium suffices to determine
these membrane stresses (Chapter 20). For a cylinder with internal pressure p,

σθ = pr/t (3.61a)

If the ends of the cylinder are closed,

σx = pr/2t (3.61b)

The results for the circumferential stress are about 5% in error on the danger
side when the thickness is one-tenth the radius of the cylinder (t = 0.1r). Shells
of greater relative thickness should be analyzed according to bending shell theories
(Chapter 20).

Sphere Stress The stresses σ acting in the plane of the sphere wall are the same
in all directions under uniform internal pressure (Fig. 3-32):

σ = pr/2t (3.62)

It can be seen that they are one-half the magnitude of the circumferential stresses of
the cylinder. When the thickness equals one-fifth the radius of the sphere (t = 0.2r),
the thin-sphere formula gives values in error by about 2.5% on the danger side. If
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Figure 3-32: Sphere.

the thickness exceeds one-fifth the radius, more accurate formulas should be used
(Chapter 20).

Stress for Shells of Revolution A shell of revolution is formed by rotating
a plane curve, called the meridian, about an axis lying in the plane of the curve
(Fig. 3-33). The stresses on an element of a general membrane shell of revolution
(Fig. 3-34a) are related to the pressure p by

σφ/Rφ + σθ/Rθ = p/t (3.63)

Figure 3-33: Shell of revolution.
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Figure 3-34: Stresses in a shell of revolution: (a) shell element; (b) meridional stress; (c)
circumferential stress.

where σφ is the meridional stress (psi, N/m2 or Pa) (Fig. 3-34b), Rφ is the radius of
curvature of the meridian, σθ is the hoop, ring, or circumferential stress (psi, N/m2)
(Fig. 3-34c), and Rθ is the radius of curvature of the section normal to the meridian
curve; that is, Rθ is the length of the normal between the surface and the axis of
revolution and originates at the shell axis and in general is not perpendicular to the
shell axis, whereas the center of curvature for Rφ in general will not lie on the shell
axis (see Fig. 3-34a).

3.13 COMBINED STRESSES

In the most general case, a body may be subjected to a variety of types of loadings,
such as a combination of tension, compression, twisting, and bending loads. In such
a case, it will be assumed that each load produces the stress that it would if it were
the only load acting on the body. As long as linearity prevails, the final stress is then
found by careful superposition of the several states of stress.

Frequently, there is little difficulty in identifying the individual states of stress
composing a combined stress problem. The appropriate stress formula developed
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in previous sections should be associated with each load. For example, in a bar sub-
jected simultaneously to tension and torsion loads, the axial normal stress component
is σx = P/A, where P is the tensile load and A is the cross-sectional area of the bar.
Also present is a shear stress due to the torque, τ = Tr/J , where T is the torque,
r the radius of the section, and J the polar moment of inertia. The case above leads
to one normal and one shear stress. Normal stresses (e.g., extension and bending
stresses), are directly additive, as are shear stresses if they act in the same direction.
If not, the methods in Section 3.3 are employed, usually to calculate the principal
stresses at a point.

Note that superposition is valid if the material is linearly elastic and if the effect
of one type of loading does not influence the internal force corresponding to other
loadings of interest.

Example 3.5 Bar under Combined Stresses Find the maximum shear stress on
the face of the shaft of circular cross section shown in Fig. 3-35.

At any axial location to the right of the 120 in.-lb torque (Fig. 3-35), we find the
internal forces to be V = 800 lb, T = 120 in.-lb, and M = 800x in.-lb. The shear
stresses are given by Eqs. (3.47) and (3.57a). From these formulas the peak torsional
stress occurs at the outer fibers, and the shear stress due to V is a maximum at the
diameter 1–2 in Fig. 3-35c, where Q is a maximum. The maximum combined shear
stress occurs at point 1, where the two peak shear stresses act in the same direction:

Figure 3-35: Bar under combined stresses.
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τmax = V Q

I b
+ Tr0

J
= V (πr2

0/2)(4r0/3π)

(πr4
0/4)2r0

+ Tr0

J
= 4V

3πr2
0

+ Tr0

J

= 4V

3A
+ T r0

J
= 4(800)

3(0.196)
+ 120(0.25)

0.00614
= 10,328 psi

(1)

where A = 1
4πd2 = 0.196 in2 and J = 1

32πd4 = 0.00614 in4. Note the bar also has
an axial normal stress due to bending.

Example 3.6 Eccentric Loads A cantilever beam is loaded by a force of 40 kN
applied 80 mm from the centroid (Fig. 3-36). Find the maximum normal stress for a
vertical cross section. Neglect the weight of the beam.

Figure 3-36: Eccentric load.

The eccentric load P = 40 kN is statically equivalent to the load P through the
centroid and the moment Pe = 40×80 mm·kN about a centroid axis. The combined
normal stress is

σ = − P

A
− Pez

I
= −40 kN

(200 mm)(50 mm)
− (40 kN)(80 mm)z

1
12 (50 mm)(200 mm)3

(1)

The peak bending stresses occur at the outer fibers where z = ±100 mm. Thus, at
the bottom fibers,

σ = −4.0 − 9.6 = −13.6N/mm2 = −13.6MN/m2 (compression) (2)

At the top fibers,

σ = −4.0 + 9.6 = 5.6N/mm2 = 5.6MN/m2 (tension) (3)

Example 3.7 Combined Bending and Torsion of Shafts Show that when a
solid circular shaft of diameter d is subjected to a bending moment M and a torque
T , (a) the maximum principal stress is equal to 16(M +√

M2 + T 2)/πd3 and (b) the
maximum shear stress is equal to 16

√
M2 + T 2/πd3.



3.14 UNSYMMETRIC BENDING 129

The maximum stresses, which occur at the outer fibers, are given by Eqs. (3.56a)
and (3.47) with J = 2I and r = z = c:

σ = Mc/I, τ = T c/J = T c/2I (1)

The maximum principal stress is derived using Eq. (3.13a):

σ1 = σ

2
+
√(σ

2

)2 + τ 2 = Mc

2I
+
√(

Mc

2I

)2

+
(

T c

2I

)2

= 16

πd3

(
M + √

M2 + T 2
) (2)

where we have set c = 1
2 d. The peak shear stress is found from Eq. (3.14):

τmax =
√(σ

2

)2 + τ 2 = 16

πd3

√
M2 + T 2 (3)

For convenient reference, the basic stress formulas considered in this chapter for
simple configurations are given in Table 3-3. The basic deformation formulas are
given in Table 3-4.

3.14 UNSYMMETRIC BENDING

Normal Stress

The formula for normal stress in straight beams, σ = Mz/I , is applicable only if the
bending moment acts around one of the principal axes of inertia of the cross section.
That is, the bending stress theory developed thus far is appropriate for a symmetric
cross section bent in its plane of symmetry.

Consider the more general case of an unsymmetric cross section with positive
(tensile) axial P and bending moment components My = M and Mz . The formula

σ = P

A
+ My Iz + Mz Iyz

Iz Iy − I 2
yz

z − Mz Iy + My Iyz

Iz Iy − I 2
yz

y (3.64)

applies. The coordinates y, z are measured from axes passing through the centroid of
the cross section. The moments of inertia Iy = I, Iz, Iyz are taken about these axes.

Loading in One Plane If the bending moment Mz is zero, Eq. (3.64) reduces to
a formula applicable to an unsymmetric section loaded in a single plane:

σ = P/A + My(Izz − Iyz y)/(Iz Iy − I 2
yz) (3.65)

Principal Axes Suppose that y, z correspond to principal axes of inertia through
the centroid. Then Iyz = 0 and Eq. (3.64) becomes
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σ = P/A + Myz/Iy − Mz y/Iz (3.66)

where the bending moments have been resolved into components along the principal
axes.

Bending about a Single Axis Equation (3.64) reduces to the usual bending
stress formula of Eq. (3.55) if the bending moment acts around a single principal
axis of inertia through the centroid. We use Eq. (3.66) with

My = M, P = 0, Mz = 0, Iy = I

Then

σ = Mz/I

Example 3.8 Unsymmetric Bending Consider the beam section in Fig. 3-37a.
From the formulas of Chapter 2,

Iz = 1
12 th3, Iy = 1

3 th3, Iyz = 1
8 th3 (1)

To compute the bending stresses, use Eq. (3.65) with P = 0, My = M,

σ = My(Izz − Iyz y)

Iz Iy − I 2
yz

= M

th3

(
48

7
z − 72

7
y

)
(2)

which is plotted in Fig. 3-37b. The peak stresses occur at extreme fibers. At point
A, with z = y = 1

2 h, we find σA = −12M/7th2. At B, with z = 1
2 h and y = 0,

σB = 24M/7th2 (see Fig. 3-37b).

Figure 3-37: Example 3.8: unsymmetric bending.
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If formula 4 in Table 3-3, which does not take the lack of symmetry into account,
had been used, then

σA = σB =
(

Mz

Iy

)
z=h/2

=
1
2 Mh
1
3 th3

= 3M

2th2
(3)

Comparison of this with the correct values of σA and σB shows that errors of 188
and 56%, respectively, would occur.

Shear Stress

The familiar formula for shear stress in straight beams, τ = V Q/I b, applies to
symmetric sections in which the shear force V is along one of the principal axes
of inertia of the cross section. For an unsymmetric cross section with positive shear
forces Vz and Vy , the average shear stress is given by

τ = Iz Qy − Iyz Qz

b(Iz Iy − I 2
yz)

Vz + Iy Qz − Iyz Qy

b(Iz Iy − I 2
yz)

Vy (3.67)

where Qy and Qz are first moments of inertia of the area beyond the point at which
τ is calculated (Fig. 3-38). These first moments are defined by Eq. (2.15).

The coordinates y, z in Eq. (3.67) are referred to axes passing through the centroid
of the cross section. If the width b is chosen parallel to the y axis, Eq. (3.67) gives
the stress τzx . If b is parallel to the z axis, Eq. (3.67) corresponds to τxy . Moreover,
b can be chosen such that Eq. (3.67) gives the average shear stress in any direction.
This is accomplished by selecting b to be the section width at the point where the
stress is sought. This width is taken in a direction perpendicular to the desired stress.
If the shear stress along the line 1–2 of the section in Fig. 3-38 is to be computed, b

Figure 3-38: Shear stress.
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should be selected as indicated. This fixes area A0 and also establishes Qy and Qz .
Note that according to this formula, the average shear stress is constant along 1–2.
Hence, only when the actual shear stress is constant along 1–2 is the average shear
stress of Eq. (3.67) equal to the actual shear stress on b. Equation (3.67) is normally
considered to be reasonably accurate for thin-walled sections and somewhat less
accurate for thick sections. More accurate stresses are provided by the computer
program discussed in Chapter 15.

Equation (3.67) is usually employed to calculate the shear stress or shear flow in
thin-walled open sections. This relationship reduces to τ = V Q/I b if the loading is
in the xz plane (Vy = 0) and z and y are the principal axes of inertia (Iyz = 0).

Example 3.9 Shear Stress in Unsymmetric Bending Find the shear flow in the
beam section in Fig. 3-39a due to the shear force Vz .

Figure 3-39: Example 3.9.
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The shear flow is calculated from Eq. (3.67) using q = τb. The moments of
inertia are given by Eq. (1) of Example 3.8. Equation (3.67), with b = t , reduces to

τ = 48Qy − 72Qz

7t2h3
Vz (1)

The first moments Qy and Qz of Eq. (2.15) are taken about y, z coordinates passing
through the centroid. For a point in the flange between A and B (Fig. 3-39b),

Qz =
∫

A0

y dA = 1

2

(
1

2
h + y

)
A0

= 1

2

(
1

2
h + y

)
t

(
1

2
h − y

)
= 1

2
t

[(
1

2
h

)2

− y2

]
(2)

Qy =
∫

A0

z dA = 1

2
h A0 = 1

2
ht

(
1

2
h − y

)

From (1), the stress between A and B is given by

τ = 12

7th3

(
h

4

2

− 2hy + 3y2

)
Vz (3)

which is a parabola in y.
For a point in the web between C and B in Fig. 3-39c,

Qz =
∫

A0

y dA = h

4
A′

1 + (0)A′
2 = h

4

(
t
h

2

)
= t

h2

8

Qy =
∫

A0

z dA = h

2
A′

1 +
(

z + h/2 − z

2

)
A′

2 = t

2

(
3h2

4
− z2

)
(4)

τ = 24

7th3

(
3

8
h2 − z2

)
Vz

where A′
1 is the area of the lower flange and A′

2 is the area of that portion of the web
beyond the point at which τ is calculated.

The distribution of shear stress is shown in Fig. 3-39a. The peak value of 9Vz/7ht
occurs at C, the centroid. If formula 5 in Table 3-3 were used to calculate the stress,
the maximum value would occur at C. Using (4) above,

τ = V Q

I b
= Vz Qy

Iyt
=

1
2 Vzt ( 3

4 h2 − z2)

( 1
3 th3)t

= 3

2th3

(
3

4
h2 − z2

)
Vz (5)



134 STRESS AND STRAIN

and at z = 0, τmax = 9Vz/8ht . This is 12.5% in error relative to the more exact value
found using Eq. (3.67).

3.15 THEORIES OF FAILURE

Concept of Failure

Structural members and machine parts may fail to perform their intended functions
if excessive elastic deformation, yielding (plastic deformation), or fracture (break)
occurs. For a failure-safe design, the engineer must determine possible modes of
failure of the structural or machine system and then establish suitable failure criteria
that accurately predict the various modes of failure. The determination of modes of
failure [3.8] requires extensive knowledge of the response of material or a structural
system to loads. In particular, it may require a comprehensive stress analysis of the
system. The mode of failure depends on the type of material used and the manner of
loading (e.g., static, dynamic, and fatigue).

Two types of excessive elastic deformation result in structural failure:

1. Deformation satisfying the usual conditions of equilibrium, such as deflec-
tion of a beam or angle of twist of a shaft under gradually applied (static)
loads. The ability to resist such deformation is referred to as the stiffness of
a member. Furthermore, there can be excessive deformations associated with
the amplitudes of the vibration of a machine member.

2. Buckling or an inordinately large displacement under conditions of unstable
equilibrium that may occur in a slender column when the axial load exceeds the
Euler critical load, in a thin plate when the in-plane forces exceed the critical
load, or when the external pressure on a thin-walled shell exceeds a critical
value. This is a form of instability, referred to as bifurcation.

To ascertain if it will serve its purpose, a load-carrying solid must be investigated
from the standpoint of strength in addition to the possibility of the stiffness and
stability failures considered above. A discussion of strength-related failure follows.

Yielding failure is due to plastic deformation of a significant part of a member,
sometimes called extensive yielding to distinguish it from (localized) yielding of a
small part of a member. Yielding under room and elevated temperatures is discussed
in Chapter 4. Yielding occurs when the elastic limit (or yielding point) of the mate-
rial has been exceeded. As indicated in Chapter 4, in a ductile metal under conditions
of static loading at room temperature, yielding rarely results in fracture because of
the strain-hardening effect. For simple tensile loading, failure by excessive plastic
deformation is controlled by the yield strength of the metal. However, for more com-
plex loading conditions, the yield strength must be used with a suitable criterion, a
“theory of failure,” which is discussed later in this section. At temperatures signifi-
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cantly greater than room temperature, metals no longer exhibit significant hardening.
Instead, metals can deform continuously at constant stress levels in a time-dependent
yielding known as creep.

Members can fracture before failure defined by excessive elastic deformation or
yielding can occur. The mechanisms of this fracture include the following:

1. Rapid fracture of brittle materials

2. Fatigue of progressive fracture

3. Fracture of flawed members

4. Creep at elevated temperatures

Fatigue deserves special attention because the magnitude of the repetitive load
need not be high enough to cause static fracture (i.e., the stress may be relatively
low). But under lengthy vibratory loading, fatigue cracks can form. Fatigue fracture
is often ranked as the most serious type of fracture in machine design simply because
it can occur under normal operating conditions. Fracture and fatigue are discussed
in Chapter 7. Creep is discussed in Chapter 4. Failure theories for yield are treated
in the following subsections. By replacing the yield stress by another critical stress
level (e.g., the ultimate stress), these theories are often considered to be applicable
to failures other than yield.

Tensile tests provide the most commonly available information about the failure
level of a material. The problem arises when an attempt is made to relate these tensile
data to a combined stress situation. In some combined stress cases tests can be per-
formed to determine the yield stress. Usually, it is not convenient, or even possible, to
conduct a suitable model test; consequently, it is necessary to develop a relationship
between stress under complicated stress conditions and the behavior of a material in
simple tension or compression.

For the theories considered here, it is assumed that the tension or compression
critical stresses σys (yield stress) or σu (ultimate stress) are available as properties
found from simple material tests. In developing the various failure criteria, it is con-
venient to use the fact that any state of stress at a point can be reduced through a
rotation of coordinates to a state of stress involving only the principal stresses σ1,
σ2, and σ3. Often, these principal stresses are output by general-purpose structural
analysis programs. The same reasoning applies to strains.

Maximum-Stress Theory In the maximum-stress theory, or Rankine theory, the
maximum principal stress is taken as the criterion of failure. For the moment, fail-
ure is to be defined in terms of yielding, although the same theory applies if the
yield stress is replaced by another stress level, such as the ultimate stress. For the
maximum-stress theory, yield occurs at a point in the structure when one of the prin-
cipal stresses at this point, which is subjected to combined stresses, reaches the yield
strength in simple tension (σys) or compression for the material. According to this
theory, yielding is not affected by the level of the other principal stresses. Thus, for
material whose tension and compression properties are the same, the failure criterion
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Figure 3-40: Graphical representation of theories of failure in a two-dimensional state of
stress.

is defined as

σ1 = σys or |σ3| = σ ′
ys (3.68)

where σys and σ ′
ys are the yield stresses in simple tension and compression, respec-

tively. The principal stresses are so arranged that their algebraic values satisfy the
relation σ1 > σ2 > σ3.

Maximum-stress theory can readily be illustrated. For example, a graphical rep-
resentation in a two-dimensional state of stress is shown in Fig. 3-40. The locus of
failure points is the square ABC D.

Maximum-Strain Theory The maximum-strain theory, considered to be due to
Saint-Venant, postulates that a ductile material begins to yield when the maximum
extensional strain at a point reaches the yield strain in simple tension, or when the
minimum strain (shortening) equals the yield point strain in simple compression. By
means of Hooke’s laws, for σ1 > σ2 > σ3, this failure criterion is embodied in the
equations

σ1 − ν(σ2 + σ3) = σys, |σ3 − ν(σ1 + σ2)| = σ ′
ys (3.69)

The maximum-strain theory is not considered to be reliable in many instances.

Maximum-Shear Theory The maximum-shear theory, or Tresca or Guest’s the-
ory, assumes that failure occurs in a body subjected to combined stresses when the
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maximum shear stress at a point [e.g., 1
2 (σ1 − σ2)], reaches the value of shear failure

stress of the material in a simple tension test [e.g., 1
2σys]. Therefore, failure under

combined stresses is decided by the condition

σmax − σmin = σys (3.70a)

where σmax and σmin are the maximum and minimum principal stresses, respectively.
The term σmax − σmin can also be expressed as

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) (3.70b)

The largest of these absolute values is sometimes referred to as the stress intensity.
This quantity is often computed by general-purpose analysis software.

It is important to note that for the case σ1 > σ2 > σ3, the failure criterion would
be

σ1 − σ3 = σys (3.70c)

A plot of this theory for a two-dimensional state of stress is given in Fig. 3-40.
The locus of failure points is the polygon AHECIFA.

von Mises Theory The von Mises theory, also called the Maxwell–Huber–
Hencky–von Mises theory, octahedral shear stress theory, and maximum distortion
energy theory, states that failure at a particular location occurs when the energy of
distortion reaches the same energy for failure in tension. That is, failure takes place
when the principal stresses are such that

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2 = 2σ 2

ys (3.71a)

This relation holds regardless of the relative magnitude of σ1, σ2, and σ3.
The quantity

{ 1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]}1/2 = σe (3.71b)

is often referred to as the equivalent stress. This is sometimes available as output of
general-purpose structural analysis software.

In a two-dimensional state of stress (σ3 = 0), Eq. (3.71a) becomes

σ 2
ys = σ 2

1 + σ 2
2 − σ1σ2 (3.72)

This relationship is plotted in Fig. 3-40.

Mohr’s Theory Mohr’s theory, also called Coulomb–Mohr theory or internal-
friction theory, is based on the results of the standard tension and compression tests,
which give the tensile and compressive strengths σys and σ ′

ys . Two Mohr circles
for these experiments can be plotted on the same diagram. A pair of lines AB and
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Figure 3-41: Mohr’s theory of failure.

C D (Fig. 3-41) are drawn tangent to the two Mohr circles. Mohr’s theory states
that failure of an isotropic material, either by fracture or by the onset of yielding,
will occur at a point where the largest Mohr circle for this point (having diameter
σ1 − σ3, as in Fig. 3-41) touches a failure envelope. Any “interior” circle, such as
the dashed one in Fig. 3-41, represents a state of stress that is safe, while the solid
circle represents a state of stress that is in failure. It can be shown that failure occurs
when

σ1/σys + σ3/σ
′
ys ≥ 1 (3.73)

where σys > 0 and σ ′
ys < 0 and the maximum and minimum principal stresses σ1

and σ3 carry their algebraic signs. In plane stress problems, if all normal stresses
are tensile, Eq. (3.73) coincides with the maximum-stress theory (σ1 ≥ σys). For
ductile materials, it is usually assumed that σys = −σ ′

ys , so that Eq. (3.73) becomes
σ1 − σ3 ≥ σys .

Validity of Theories

The appropriate failure theory to be used in a given design situation depends on the
mode of failure. A theory that works for ductile failure may not be appropriate for
brittle failure. A single theory may not always apply to a given material because the
material may behave in a ductile fashion under some conditions and in a brittle fash-
ion under others (see Chapter 4). For the foregoing theories, the material is assumed
to be isotropic. These theories of failure pertain to material failure rather than to
structural failure by such modes as buckling or excessive elastic deformation.

A comparison has been made [3.2] of experimental yield stresses for several met-
als under biaxial stress conditions with some of the failure theories described above.
The results, which are for room temperature and slow loading, seem to indicate
somewhat better agreement with von Mises theory than with maximum-shear the-
ory.

Maximum-stress and maximum-strain theory are often applicable to brittle failure
of materials, so that σu often replaces σys in Eqs. (3.68) and (3.69). Maximum-strain
theory has been shown not to be reliable in many instances. Maximum-shear the-
ory is applied frequently in machine design for ductile materials where σys = σ ′

ys .
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Maximum-shear theory has the advantage over von Mises theory that the stresses
appear in a linear fashion.

Mohr’s theory is generally used for brittle materials, which are much stronger in
compression than in tension (e.g., for cast iron).

3.16 APPLICATION OF FAILURE THEORIES

The following examples illustrate use of the failure theories discussed above.

Example 3.10 Internal Pressure of a Cylindrical Vessel A cylindrical pressure
vessel 80 in. in diameter and 1 in. thick is made of steel with a yield stress in tension
of 35,000 psi. Determine the internal pressure that will produce yielding by using the
von Mises theory of failure as the yield criterion.

From the stress formulas for thin-walled pressure vessels presented previously,
the principal stresses at any point in a cylinder (Fig. 3-31) will be the circumferential
stress σθ , the longitudinal stress σx , and the radial stress σr . Let σ1 = σθ , σ2 = σx ,
and σ3 = σr . Equations (3.61) give

σ1 = pr/t, σ2 = pr/2t (1)

The stress σr is small (0 ≤ σr ≤ p) relative to σθ and σx and is neglected; that is,

σ3 = 0 (2)

Substituting (1) and (2) in Eq. (3.71a) gives

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2 = 2(σ 2

1 − σ1σ2 + σ 2
2 )

= 2
[( pr

t

)2 − pr

t

pr

2t
+
( pr

2t

)2
]

= 2σ 2
ys

Therefore,

p =
√

4

3

t2

r2
(σ 2

ys) = 2√
3

tσys

r
= 2√

3

(1)(35,000)

80/2
≈ 1010 psi (3)

According to von Mises theory, this p gives the pressure value that would initiate
yielding of the cylinder.

If the maximum-stress theory of failure [Eq. (3.68)] and the maximum-shear the-
ory [Eq. (3.70c)] are used, the internal pressure that will produce yielding in both
cases is

p = tσys

r
= 1(35,000)

80/2
= 875 psi (4)

In establishing this relationship, remember that σ3 = 0.
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The results in (3) and (4) indicate that in this case, using the maximum stress
theory and maximum shear theory is more conservative than using the von Mises
theory.

Example 3.11 Application of Tresca and von Mises Theories If the yield
strength of a material in a tensile test is σys = 140MN/m2, determine the largest
safe shear stress τ in a cylinder of the same material in torsion.

In the simple tension test, the state of stress is σ1 = σys = 140MN/m2, σ2 =
σ3 = 0. From Eq. (3.70a),

σmax − σmin = σ1 − 0 = σys (1)

For pure torsion of the cylinder τ = T r/J (Table 3-3). The principal stresses are,
by Eqs. (3.13),

σmax = σ1 = τ, σmin = σ2 = −τ, σ3 = 0 (2)

Therefore,

σmax − σmin = 2τ (3)

Use of the Tresca theory yields [see Eq. (3.70a)], from (1) and (3),

2τ = σys or τ = 1
2σys = 140

2 = 70MN/m2 (4)

If the von Mises theory is to be used, the equivalent stress σe in Eq. (3.71b) is
evaluated for the two states of stress. For simple tension

σe = 1√
2
(σ 2

ys + σ 2
ys)

1/2 = σys (5)

For torsion of the cylinder, from (2),

σe = 1√
2
(4τ 2 + τ 2 + τ 2)1/2 = √

3 τ (6)

By the von Mises theory, equating (5) and (6), we have

√
3 τ = σys or τ = 0.577σys = 80.83MN/m2 (7)

Of course, the same result is obtained by applying Eq. (3.71a) directly.
The results in (4) and (7) indicate that for torsion of a cylinder, Tresca (maximum-

shear) theory is more conservative than von Mises theory.
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TABLE 3-1 MOHR’S CIRCLES FOR SOME COMMON STATES OF
STRESS
1.
Uniaxial compression

σx = σ3,
σ1 = σ2 = 0, so that

τmax = (σmax − σmin)/2 = σ3/2

2.
Uniaxial tension

σx = σ1,
σ2 = σ3 = 0, giving

τmax = (σmax − σmin)/2 = σ1/2

3.
Pure shear

σx = −σy = σ1 = −σ3,
σ2 = 0, so that

τmax = σ1

4.
Pure shear
τxy = τyx ,
σ2 = 0, so that

τmax = σ1

5.
Equal biaxial tension

σx = σy = σ1 = σ2, giving

τmax = σ1/2

6.
Equal biaxial compression

σx = σy = σ2 = σ3, so that
τmax = σ2/2
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7.
Equal triaxial compression
σx = σy = σz = σ1 = σ2 = σ3

TABLE 3-2 RELATIONSHIPS BETWEEN COMMONLY USED
MATERIAL CONSTANTSa

1. Shear modulus G (F/L2) G = E

2(1 + ν)

2. Lamé coefficient λ (F/L2) λ = Eν

(1 + ν)(1 − 2ν)

3. Bulk modulus K (F/L2) K = E

3(1 − 2ν)
where E = modulus of elasticity (F/L2)

ν = Poisson’s ratio

aThe units are given in parentheses, using L for length and F for force.
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TABLE 3-3 BASIC STRESS FORMULAS
Bars of Linearly Elastic Material

1. Extension: σ = P/A
2. Torsion: τ = Tr/J (circular section)
3. Torsion: τ = T/2A∗t (closed, thin-walled section)
4. Bending: σ = Mz/I
5. Shear: τ = V Q/I b

where σ = normal axial stress = σx z = vertical coordinate from neutral axis
τ = shear stress I = moment of inertia about neutral axis
P = axial force J = torsional constant = polar moment
T = axial torque of inertia for circular cross section
V = vertical shear force = Vz b = width of cross section
M = bending moment r = radius

in vertical plane = My Q = first moment with respect to neutral
A = cross-sectional area axis of area beyond point at which

A∗ = enclosed area τ is calculated
t = wall thickness

Shells

6. Cylinder: σθ = pr/t, σx = pr/2t
7. Sphere: σ = pr/2t

where σθ = hoop stress in cylinder wall p = internal pressure
σx = longitudinal stress in cylinder wall t = wall thickness
σ = membrane stress in sphere wall r = radius
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TABLE 3-4 BASIC DEFORMATION FORMULAS: BARS OF LINEARLY
ELASTIC MATERIALa

1. Extension: � = P L/AE
2. Torsion: φ = T L/G J

3. Bending:
d4w

dx4
= pz

E I
θ = −dw

dx
M = −E I

d2w

dx2
V = −E I

d3w

dx3

where A = original cross-sectional area (L2)

� = elongation (L)

E = modulus of elasticity (F/L2)

φ = angle of twist
G = shear modulus (F/L2)

J = torsional constant (L4)

L = original length (L)

I = moment of inertia about neutral axis (L4)

P = axial force (F)

pz = applied loading density (F/L)

T = torque (L F)

w = deflection (L)

aThe units are given in parentheses using L for length and F for force.
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