Multi-cell Vertical Diffused Power MOSFET (VDMOS)

MOSFETs - 2 W.P. Robbins

Important Structural Features of VDMOS

- 1. Parasitic BJT. Held in cutoff by body-source short
- 2. Integral anti-parallel diode. Formed from parasitic BJT.
- 3. Extension of gate metallization over drain drift region. Field plate and accumulation layer functions.
- 4. Division of source into many small areas connected electrically in parallel. Maximizes gate width-to-channel length ratio in order to increase gain.
- 5. Lightly doped drain drift region. Determines blocking voltage rating.

MOSFETs - 3 W.P. Robbins

Alternative Power MOSFET Geometries

- Trench-gate MOSFET
- Newest geometry. Lowest on-state resistance.

- V-groove MOSFET.
- First practical power MOSFET.
- Higher on-state resistance.

MOSFETs - 4 W.P. Robbins

MOSFET I-V Characteristics and Circuit Symbols

The Field Effect - Basis of MOSFET Operation

Threshold Voltage V_{GS(th)}

 V_{GS} where strong inversion layer has formed. Typical values 2-5 volts in power MOSFETs

- Value determined by several factors
 - 1. Type of material used for gate conductor
 - 2. Doping density of body region directly beneath gate
 - 3. Impurities/bound charges in oxide
 - 4. Oxide capacitance per unit area $C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$

 t_{ox} = oxide thickness

 Adjust threshold voltage during device fabrication via an ion implantation of impurities into body region just beneath gate oxide.

MOSFETs - 6 W.P. Robbins

Drift Velocity Saturation

- In MOSFET channel, $J = q \mu_n n E$ = q n v_n; velocity v_n = $\mu_n E$
- Velocity saturation means that the mobility $\mu_{\rm n}$ inversely proportional to electric field E.

- Mobility also decreases because large values of V_{GS} increase free electron density.
- At larger carrier densities, free carriers collide with each other (carrier-carrier scattering) more often than with lattice and mobility decreases as a result.
- Mobilty decreases, especially via carriercarrier scattering leead to linear transfer curve in power devices instead of square law transfer curve of logic level MOSFETs.

MOSFETs - 7 W.P. Robbins

Channel-to-Source Voltage Drop

- $V_{GS} = V_{GG} = V_{OX} + V_{CS}(x)$; $V_{CS}(x) = I_{D1}R_{CS}(x)$
- Larger x value corresponds be being closer to the drain and to a smaller $V_{\rm OX}.$
- Smaller V_{OX} corresponds to a smaller channel thickness. Hence reduction in channel thickness as drain is approached from the source.

MOSFETs - 8 W.P. Robbins

Channel Pinch-off at Large Drain Current

- I_{D2} > I_{D1} so V_{CS2}(x) > V_{CS1}(x) and thus channel narrower at an given point.
- Total channel resistance from drain to source increasing and curve of ${\rm I}_D\,{\rm vs}\,\,{\rm V}_{DS}$ for a fixed ${\rm V}_{GS}$ flattens out.

- Apparent dilemma of channel disappearing at drain end for large I_D avoided.
- Large electric field at drain end oriented parallel to drain current flow. Arises from large current flow in channel constriction at drain.
- 2. This electric field takes over maintenance of minimum inversion layer thickness at drain end.
- Larger gate-source bias V_{GG} postpones flattening of I_D vs V_{DS} until larger values of drain current are reached.

MOSFETs - 9 W.P. Robbins

MOSFET Switching Models for Buck Converter

• Buck converter using power MOSFET.

- MOSFET equivalent circuit valid for on-state (triode) region operation.
- MOSFET equivalent circuit valid for off
 state (cutoff) and active region operation.

MOSFETs - 10 W.P. Robbins

MOSFET Capacitances Determining Switching Speed

- Gate-source capacitance Cgs approximately constant and independent of applied voltages.
- Gate-drain capacitance C_{gd} varies with applied voltage. Variation due to growth of depletion layer thickness until inversion layer is formed.

MOSFETs - 11 W.P. Robbins