M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - V

Reference Book : • I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi, 1975.

• Vivek Sahai and Vikas Bist, *Algebra*, Narosa Publishing House, New Delhi, 1999.

Notation. The matrix of T under given basis of V is denoted by m(T).

We know that for determining a transformation $T \in A(V)$ it is sufficient to find out the image of every basis element of V. Let $v_1, v_2, ..., v_n$ be the basis of V over F and let

$$v_1T = \alpha_{11}v_1 + \alpha_{12}v_2 + ... + \alpha_{1n}v_n$$

$$\mathbf{v}_i \mathbf{T} = \alpha_{i1} \mathbf{v}_1 + \alpha_{i2} \mathbf{v}_2 + \ldots + \alpha_{in} \mathbf{v}_n$$

 $\mathbf{v}_{n}\mathbf{T} = \alpha_{n1}\mathbf{v}_{1} + \alpha_{n2}\mathbf{v}_{2} + \ldots + \alpha_{nn}\mathbf{v}_{n}$

Then matrix of T under this basis is

$$\mathbf{m}(t) = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \dots & \dots & \dots & \dots \\ \alpha_{i1} & \alpha_{i2} & \dots & \alpha_{in} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}_{n \times n}.$$

Definition. Let T be a linear transformation on V over F. The matrix of T in the basis $v_1, v_2, ..., v_n$ is called triangular if

$$\mathbf{v}_{1}\mathbf{T} = \alpha_{11}\mathbf{v}_{1}$$

$$\mathbf{v}_{2}\mathbf{T} = \alpha_{21}\mathbf{v}_{1} + \alpha_{22}\mathbf{v}_{2}$$

$$\cdots$$

$$\mathbf{v}_{i}\mathbf{T} = \alpha_{i1}\mathbf{v}_{1} + \alpha_{i2}\mathbf{v}_{2} + \dots + \alpha_{ii}\mathbf{v}_{i}$$

$$\cdots$$

$$\mathbf{v}_{n}\mathbf{T} = \alpha_{n1}\mathbf{v}_{1} + \alpha_{n2}\mathbf{v}_{2} + \dots + \alpha_{nn}\mathbf{v}_{n}.$$

Definiton. A transformation $T \in A(V)$ is called **nilpotent** if $T^n = 0$ for some positive integer n.

Definition. If $T \in A(V)$ is nilpotent then k is called **index of nilpotence** of T if $T^k = 0$ but $T^{k-1} \neq 0$.

Theorem. Prove that all the characteristic roots of a nilpotent transformation $T \in A(V)$ lies in F.

Proof. Since T is nilpotent, let r be the index of nilpotence of T. Then $T^r = 0$.

Let λ be the characteristic root of T, then there exist $v(\neq 0)$ in V such that

 $vT = \lambda v.$

As $vT^2 = (vT)T = (\lambda v)T = \lambda(vT) = \lambda\lambda v = \lambda^2 v$.

Therefore, continuing in this way, we get

$$\mathbf{v}\mathbf{T}^3 = \lambda^3 \mathbf{v}, \ldots, \mathbf{v}\mathbf{T}^r = \lambda^r \mathbf{v}$$
.

Since $T^r = 0$, hence $vT^r = v0 = 0$ and hence

Unit – V

 $\lambda^r v = 0$. But $v \neq 0$, therefore, $\lambda^r = 0$ and hence $\lambda = 0$, which all lies in F.

Definition. Let $T \in A(V)$ is nilpotent transformation with index of nilpotence n_1 . Then there exist subspace $V_1, V_2, ..., V_k$ of dimensions $n_1, n_2, ..., n_k$ respectively, each V_i is invariant under T such that $V = V_1 \bigoplus V_2 \bigoplus ... \bigoplus V_k$, $n_1 \ge n_2 \ge ... \ge n_k$ and dim $V = n_1 + n_2 + ... + n_k$. These integers $n_1, n_2, ..., n_k$ are called **invariants of T**.

Remarks.

- Invariants of a nilpotent transformation are unique.
- Transformations S and T∈A(V) are similar if and only if they have same invariants.

Definition. Let G be a finite abelian group and p be a prime number dividing |G|. We define

$$G_p = \{x \in G \mid p^r x = 0 \text{ for some } r \in Z\}.$$

Clearly, $0 \in G_p$. If x, $y \in G_p$, then $p^r x = 0$ and $p^s y = 0$, for some r, $s \in Z$, and so

$$p^{r+s}(x-y) = p^{s}(p^{r}x) - p^{r}(p^{s}x) = 0.$$

Thus, G_p is a subgroup of G.

It may be noted that G_p is a Sylow p-subgroup of G.

In the context of abelian group, we call G_p a **p-primary component** of G.

Primary Decomposition Theorem.

If G is a finite abelian group, then G is a direct sum of its p-primary components.