# M.Sc. II Sem. (Mathematics) 

# Paper $1^{\text {st }}$ - Advanced Abstract Algebra-II <br> <br> Unit - V 

 <br> <br> Unit - V}

## Reference Book : - I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi,

 1975.- Vivek Sahai and Vikas Bist, Algebra, Narosa Publishing House, New Delhi, 1999.

Notation. The matrix of $T$ under given basis of $V$ is denoted by $m(T)$.

We know that for determining a transformation $T \in A(V)$ it is sufficient to find out the image of every basis element of V. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the basis of V over F and let

$$
\mathrm{v}_{1} \mathrm{~T}=\alpha_{11} \mathrm{v}_{1}+\alpha_{12} \mathrm{v}_{2}+\ldots+\alpha_{\ln } \mathrm{v}_{\mathrm{n}}
$$

$$
\mathrm{v}_{\mathrm{i}} \mathrm{~T}=\alpha_{\mathrm{il}} \mathrm{v}_{1}+\alpha_{\mathrm{i} 2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{in}} \mathrm{v}_{\mathrm{n}}
$$

$$
\mathrm{v}_{\mathrm{n}} \mathrm{~T}=\alpha_{\mathrm{n} 1} \mathrm{~V}_{1}+\alpha_{\mathrm{n} 2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{nn}} \mathrm{v}_{\mathrm{n}}
$$

Then matrix of T under this basis is

$$
m(t)=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
\alpha_{i 1} & \alpha_{i 2} & \ldots & \alpha_{\mathrm{in}} \\
\ldots & \ldots & \ldots & \ldots \\
\alpha_{\mathrm{n} 1} & \alpha_{\mathrm{n} 2} & \ldots & \alpha_{\mathrm{n}}
\end{array}\right)_{\mathrm{n} \times \mathrm{n}}
$$

Definition. Let T be a linear transformation on V over F. The matrix of T in the basis $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ is called triangular if

$$
\begin{aligned}
& \mathrm{v}_{1} \mathrm{~T}=\alpha_{11} \mathrm{v}_{1} \\
& \mathrm{v}_{2} \mathrm{~T}=\alpha_{21} \mathrm{v}_{1}+\alpha_{22} \mathrm{v}_{2} \\
& \ldots \ldots \ldots \ldots \\
& \mathrm{v}_{\mathrm{i}} \mathrm{~T}=\alpha_{\mathrm{i} 1} \mathrm{v}_{1}+\alpha_{\mathrm{i} 2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{ii}} \mathrm{v}_{\mathrm{i}} \\
& \ldots \ldots \ldots \ldots \ldots \\
& \mathrm{v}_{\mathrm{n}} \mathrm{~T}=\alpha_{\mathrm{n} 1} \mathrm{v}_{1}+\alpha_{\mathrm{n} 2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{nn}} \mathrm{v}_{\mathrm{n}} .
\end{aligned}
$$

Definiton. A transformation $T \in A(V)$ is called nilpotent if $T^{n}=0$ for some positive integer n .

Definition. If $T \in A(V)$ is nilpotent then $k$ is called index of nilpotence of $T$ if $T^{k}=0$ but $\mathrm{T}^{\mathrm{k}-1} \neq 0$.

Theorem. Prove that all the characteristic roots of a nilpotent transformation $T \in A(V)$ lies in F.

Proof. Since T is nilpotent, let $r$ be the index of nilpotence of $T$. Then $T^{r}=0$.

Let $\lambda$ be the characteristic root of T , then there exist $\mathrm{v}(\neq 0)$ in V such that

$$
\mathrm{vT}=\lambda \mathrm{v} .
$$

As $\mathrm{vT}^{2}=(\mathrm{vT}) \mathrm{T}=(\lambda \mathrm{v}) \mathrm{T}=\lambda(\mathrm{vT})=\lambda \lambda \mathrm{v}=\lambda^{2} \mathrm{v}$.

Therefore, continuing in this way, we get

$$
\mathrm{vT}^{3}=\lambda^{3} \mathrm{v}, \ldots, \quad \mathrm{vT}^{\mathrm{r}}=\lambda^{\mathrm{r}} \mathrm{v}
$$

Since $\mathrm{T}^{\mathrm{r}}=0$, hence $\mathrm{vT} \mathrm{T}^{\mathrm{r}}=\mathrm{v} 0=0$ and hence
$\lambda^{\mathrm{r}} \mathrm{v}=0$. But $\mathrm{v} \neq 0$, therefore, $\lambda^{\mathrm{r}}=0$ and hence $\lambda=0$, which all lies in F .

Definition. Let $T \in A(V)$ is nilpotent transformation with index of nilpotence $n_{1}$. Then there exist subspace $V_{1}, V_{2}, \ldots, V_{k}$ of dimensions $n_{1}, n_{2}, \ldots, n_{k}$ respectively, each $V_{i}$ is invariant under T such that $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}, \mathrm{n}_{1} \geq \mathrm{n}_{2} \geq \ldots \geq \mathrm{n}_{\mathrm{k}}$ and $\operatorname{dim} \mathrm{V}=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}$. These integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ are called invariants of T .

## Remarks.

- Invariants of a nilpotent transformation are unique.
- Transformations $S$ and $T \in A(V)$ are similar if and only if they have same invariants.

Definition. Let $G$ be a finite abelian group and $p$ be a prime number dividing $|\mathrm{G}|$. We define

$$
\mathrm{G}_{\mathrm{p}}=\left\{\mathrm{x} \in \mathrm{G} \mid \mathrm{p}^{\mathrm{r}} \mathrm{x}=0 \text { for some } \mathrm{r} \in \mathrm{Z}\right\}
$$

Clearly, $0 \in G_{p}$. If $x, y \in G_{p}$, then $p^{r} x=0$ and $p^{s} y=0$, for some $r, s \in Z$, and so

$$
p^{r+s}(x-y)=p^{s}\left(p^{r} x\right)-p^{r}\left(p^{s} x\right)=0
$$

Thus, $\mathrm{G}_{\mathrm{p}}$ is a subgroup of $G$.

It may be noted that $G_{p}$ is a Sylow p-subgroup of $G$.

In the context of abelian group, we call $G_{p}$ a p-primary component of $G$.

## Primary Decomposition Theorem.

If $G$ is a finite abelian group, then $G$ is a direct sum of its p-primary components.

