M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - V

Reference Book : • I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi, 1975.

Definition. If $T \in A(V)$, then $\lambda \in F$ is called a characteristic root (or eigen value) of T if $\lambda - T$ is regular.

Theorem. The element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$.

Proof. If λ is a characteristic root of T, then $\lambda - T$ is singular.

Hence, by the theorem, "If V is finite dimensional over F, then $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that vT = 0", we get a vector $v \neq 0$ in V such that

$$v(\lambda - T) = 0$$

 \Rightarrow v λ - vT = 0

or $v\lambda = vT$

or $vT = v\lambda$.

On the other hand, if $vT = v\lambda$ for some $v \neq 0$ in V, then

$$-vT + v\lambda = 0$$

 \Rightarrow v (λ - T) = 0.

Hence, by the theorem, "If V is finite dimensional over F, then $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that vT = 0",

$$(\lambda - T)$$
 must be singular.

Hence, λ is a characteristic root of T.

Lemma. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of q(T).

Proof. Suppose that $\lambda \in F$ is a characteristic root of T. Then by above theorem, there is a non-zero vector v in V such that

 $vT = \lambda v.$

 $vT^2 = (\lambda v)T$

 $=\lambda(vT)$

Now,

v

[Since T is linear transformation]

 $= \lambda(\lambda v) \qquad [Since vT = v]$

i.e.

$$vT^2 = \lambda^2 v$$

 $=\lambda^2 v$

V.

Continuing in this way,

 $vT^k = \lambda^k v$, for all positive integers k.

Suppose
$$q(x) = \alpha_0 x^m + \alpha_1 x^{m-1} + \ldots + \alpha_m, \quad \alpha_i \in F.$$
 (1)

Then, $q(T) = \alpha_0 T^m + \alpha_1 T^{m-1} + \ldots + \alpha_m$.

$$\Rightarrow \quad \mathbf{v}.\mathbf{q}(\mathbf{T}) = \mathbf{v}(\alpha_0 \mathbf{T}^m + \alpha_1 \mathbf{T}^{m-1} + \dots + \alpha_m)$$
$$= \alpha_0(\mathbf{v}\mathbf{T}^m) + \alpha_1(\mathbf{v}\mathbf{T}^{m-1}) + \dots + \alpha_m \mathbf{v}.$$

Unit – V

Page 2 of 4 - Dr. Arihant Jain (98266-55655)

$$= \alpha_0 \lambda^m v + \alpha_1 \lambda^{m-1} v + \dots + \alpha_m v \qquad [Since vT^k = \lambda^k v]$$
$$= v(\alpha_0 \lambda^m + \alpha_1 \lambda^{m-1} + \dots + \alpha_m)$$
$$= q(\lambda)v \qquad (by 1)$$

i.e. $vq(T) = q(\lambda)v$

 \Rightarrow q(λ) is a characteristic root of q(T). [By above theorem]

Hence proved.

Theorem. If λ is characteristic root of T, then λ is a root of minimal polynomial of T. In particular, T has a finite number of characteristic roots in F.

Proof. As we know that if λ is a characteristic root of T, then for any polynomial q(x) over F, there exist a non zero vector v such that vq(T) = q(λ)v.

If we take q(x) as minimal polynomial of T then q(T)=0.

But then $vq(T) = q(\lambda)v$

 \Rightarrow q(λ)v=0.

As v is non zero, therefore, $q(\lambda) = 0$ i.e. λ is root of q(x).

Or, λ is root of minimal polynomial of T.

Since q(x) has only a finite number of roots in F, there can only be a finite number of characteristic roots of T in F.

Definition. The element $0 \neq v \in V$ is called a characteristic vector of T belonging to the characteristic root $\lambda \in F$ if $vT = \lambda v$.

Definition. The linear transformations S, T A(V) are said to be similar if there exists an invertible element $C \in A(V)$ such that $T = CSC^{-1}$.

Theorem. If $v_1, v_2, ..., v_n$ are different characteristic vectors belonging to distinct characteristic roots $\lambda_1, \lambda_2, ..., \lambda_n$ respectively, then $v_1, v_2, ..., v_k$ are linearly independent over F.

Proof. Suppose if possible $v_1, v_2, ..., v_n$ are linearly dependent over F, then there exist a relation $\beta_1 v_1 + ... + \beta_n v_n = 0$, where $\beta_1 + ... + \beta_n$ are all in F and not all of them are zero. In all such relations, there is one relation having as few non-zero coefficients as possible. By suitably renumbering the vectors, let us assume that this shortest relation be

$$\beta_1 v_1 + ... + \beta_k v_k = 0$$
, where $\beta_1 \neq 0, ..., \beta_k \neq 0$. (i)

Applying T on both sides and using $v_i T = \lambda_i v_i$ in (i) we get

$$\lambda_1 \beta_1 \mathbf{v}_1 + \ldots + \lambda_k \beta_k \mathbf{v}_k = 0. \tag{ii}$$

Multiplying (i) by λ_1 and subtracting from (ii), we obtain

$$(\lambda_2 - \lambda_1)\beta_2 \mathbf{v}_2 + \ldots + (\lambda_k - \lambda_1)\beta_k \mathbf{v}_k = 0.$$

Now $(\lambda_i - \lambda_1) \neq 0$ for i >1 and $\beta_2 \neq 0$, therefore, $(\lambda_i - \lambda_1)\beta_i \neq 0$. But then we obtain a shorter relation than that in (i) between $v_1, v_2, ..., v_n$. This contradiction proves the theorem.

Corollary. If dim $F_V = n$, then $T \in A(V)$ can have at most n distinct characteristic roots in F.

Proof. Suppose if possible T has more than n distinct characteristic roots in F, then there will be more than n distinct characteristic vectors belonging to these distinct characteristic roots. By above Theorem, these vectors will be linearly independent over F.

Since $\dim_F V = n$, these n+1 element will be linearly dependent, a contradiction. This contradiction proves T can have at most n distinct characteristic roots in F.