M.Sc. II Sem. (Mathematics)

Paper $1^{\text {st }}$ - Advanced Abstract Algebra-II

 Unit - V

 Unit - V}

Reference Book : - I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi,

 1975.Definition. If $T \in A(V)$, then $\lambda \in F$ is called a characteristic root (or eigen value) of T if $\lambda-\mathrm{T}$ is regular.

Theorem. The element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $\mathrm{v} \neq 0$ in $\mathrm{V}, \mathrm{vT}=\lambda \mathrm{v}$.

Proof. If λ is a characteristic root of T, then $\lambda-T$ is singular.

Hence, by the theorem, "If V is finite dimensional over F, then $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that $v T=0$ ", we get a vector $v \neq 0$ in V such that

$$
\begin{array}{ll}
& \mathrm{v}(\lambda-\mathrm{T})=0 \\
\Rightarrow & \mathrm{v} \lambda-\mathrm{vT}=0 \\
\text { or } & \mathrm{v} \lambda=\mathrm{vT} \\
\text { or } & \mathrm{vT}=\mathrm{v} \lambda .
\end{array}
$$

On the other hand, if $v T=v \lambda$ for some $v \neq 0$ in V, then

$$
\begin{aligned}
&-\mathrm{vT}+\mathrm{v} \lambda=0 \\
& \Rightarrow \quad \mathrm{v}(\lambda-\mathrm{T})=0 .
\end{aligned}
$$

Hence, by the theorem, "If V is finite dimensional over F, then $T \in A(V)$ is singular if and only if there exists a $\mathrm{v} \neq 0$ in V such that $\mathrm{vT}=0$ ",

$$
(\lambda-T) \text { must be singular. }
$$

Hence, λ is a characteristic root of T .

Lemma. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any polynomial $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}], \mathrm{q}(\lambda)$ is a characteristic root of $\mathrm{q}(\mathrm{T})$.

Proof. Suppose that $\lambda \in \mathrm{F}$ is a characteristic root of T. Then by above theorem, there is a non-zero vector v in V such that

$$
\mathrm{vT}=\lambda \mathrm{v} .
$$

Now,

$$
\begin{array}{rlr}
\mathrm{vT}^{2} & =(\lambda \mathrm{v}) \mathrm{T} & \\
& =\lambda(\mathrm{vT}) & {[\text { Since } \mathrm{T} \text { is linear transformation }]} \\
& =\lambda(\lambda \mathrm{v}) & {[\text { Since } \mathrm{vT}=\mathrm{v}]} \\
& =\lambda^{2} \mathrm{v} &
\end{array}
$$

i.e.

$$
\mathrm{vT}^{2}=\lambda^{2} \mathrm{v}
$$

Continuing in this way,

$$
\mathrm{v} \mathrm{~T}^{\mathrm{k}}=\lambda^{\mathrm{k}} \mathrm{v} \text {, for all positive integers } \mathrm{k} \text {. }
$$

Suppose $q(x)=\alpha_{0} x^{m}+\alpha_{1} x^{m-1}+\ldots+\alpha_{m}, \quad \alpha_{i} \in F$.

Then, $\quad \mathrm{q}(\mathrm{T})=\alpha_{0} \mathrm{~T}^{\mathrm{m}}+\alpha_{1} \mathrm{~T}^{\mathrm{m}-1}+\ldots+\alpha_{\mathrm{m}}$.

$$
\begin{aligned}
\Rightarrow \quad \mathrm{v} \cdot \mathrm{q}(\mathrm{~T}) & =\mathrm{v}\left(\alpha_{0} \mathrm{~T}^{\mathrm{m}}+\alpha_{1} \mathrm{~T}^{\mathrm{m}-1}+\ldots+\alpha_{\mathrm{m}}\right) \\
& =\alpha_{0}\left(\mathrm{vT}^{\mathrm{m}}\right)+\alpha_{1}\left(\mathrm{vT}^{\mathrm{m}-1}\right)+\ldots+\alpha_{\mathrm{m}} \mathrm{v}
\end{aligned}
$$

$$
\begin{array}{ll}
=\alpha_{0} \lambda^{\mathrm{m}} \mathrm{v}+\alpha_{1} \lambda^{\mathrm{m}-1} \mathrm{v}+\ldots+\alpha_{\mathrm{m}} \mathrm{v} & {\left[\text { Since } \mathrm{vT}^{\mathrm{k}}=\lambda^{\mathrm{k} v} \mathrm{v}\right]} \\
=\mathrm{v}\left(\alpha_{0} \lambda^{\mathrm{m}}+\alpha_{1} \lambda^{\mathrm{m}-1}+\ldots+\alpha_{\mathrm{m}}\right) \\
=\mathrm{q}(\lambda) \mathrm{v} & \text { (by } 1) \tag{by1}
\end{array}
$$

i.e. $\quad v q(T)=q(\lambda) v$
$\Rightarrow \quad \mathrm{q}(\lambda)$ is a characteristic root of $\mathrm{q}(\mathrm{T})$. [By above theorem]

Hence proved.

Theorem. If λ is characteristic root of T, then λ is a root of minimal polynomial of T. In particular, T has a finite number of characteristic roots in F .

Proof. As we know that if λ is a characteristic root of T, then for any polynomial $q(x)$ over F, there exist a non zero vector v such that $v q(T)=q(\lambda) v$.

If we take $\mathrm{q}(\mathrm{x})$ as minimal polynomial of T then $\mathrm{q}(\mathrm{T})=0$.

But then $\quad v q(T)=q(\lambda) v$
$\Rightarrow \quad q(\lambda) v=0$.

As v is non zero, therefore, $\mathrm{q}(\lambda)=0$ i.e. λ is root of $\mathrm{q}(\mathrm{x})$.

Or, λ is root of minimal polynomial of T .

Since $\mathrm{q}(\mathrm{x})$ has only a finite number of roots in F , there can only be a finite number of characteristic roots of T in F .

Definition. The element $0 \neq \mathrm{V} \in \mathrm{V}$ is called a characteristic vector of T belonging to the characteristic root $\lambda \in \mathrm{F}$ if $\mathrm{vT}=\lambda \mathrm{v}$.

Definition. The linear transformations $\mathrm{S}, \mathrm{T} \mathrm{A}(\mathrm{V})$ are said to be similar if there exists an invertible element $\mathrm{C} \in \mathrm{A}(\mathrm{V})$ such that $\mathrm{T}=\mathrm{CSC}^{-1}$.

Theorem. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are different characteristic vectors belonging to distinct characteristic roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ respectively, then $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ are linearly independent over F.

Proof. Suppose if possible $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent over F, then there exist a relation $\beta_{1} \mathrm{v}_{1}+\ldots+\beta_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}=0$, where $\beta_{1}+\ldots+\beta_{\mathrm{n}}$ are all in F and not all of them are zero. In all such relations, there is one relation having as few non-zero coefficients as possible. By suitably renumbering the vectors, let us assume that this shortest relation be

$$
\begin{equation*}
\beta_{1} \mathrm{v}_{1}+\ldots+\beta_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}=0, \text { where } \beta_{1} \neq 0, \ldots, \beta_{\mathrm{k}} \neq 0 \tag{i}
\end{equation*}
$$

Applying T on both sides and using $\mathrm{v}_{\mathrm{i}} \mathrm{T}=\lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ in (i) we get

$$
\begin{equation*}
\lambda_{1} \beta_{1} \mathrm{v}_{1}+\ldots+\lambda_{\mathrm{k}} \beta_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}=0 . \tag{ii}
\end{equation*}
$$

Multiplying (i) by λ_{1} and subtracting from (ii), we obtain

$$
\left(\lambda_{2}-\lambda_{1}\right) \beta_{2} \mathrm{v}_{2}+\ldots+\left(\lambda_{\mathrm{k}}-\lambda_{1}\right) \beta_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}=0 .
$$

Now $\left(\lambda_{i}-\lambda_{1}\right) \neq 0$ for $\mathrm{i}>1$ and $\beta_{2} \neq 0$, therefore, $\left(\lambda_{\mathrm{i}}-\lambda_{1}\right) \beta_{\mathrm{i}} \neq 0$. But then we obtain a shorter relation than that in (i) between $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. This contradiction proves the theorem.

Corollary. If $\operatorname{dimF}_{\mathrm{V}}=\mathrm{n}$, then $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ can have at most n distinct characteristic roots in F.

Proof. Suppose if possible T has more than n distinct characteristic roots in F , then there will be more than n distinct characteristic vectors belonging to these distinct characteristic roots. By above Theorem, these vectors will be linearly independent over F.

Since $\operatorname{dim}_{\mathrm{F}} \mathrm{V}=\mathrm{n}$, these $\mathrm{n}+1$ element will be linearly dependent, a contradiction. This contradiction proves T can have at most n distinct characteristic roots in F .

