M.Sc. II Sem. (Mathematics)

Paper $1^{\text {st }}$ - Advanced Abstract Algebra-II

 Unit - V

 Unit - V}

Reference Book : • I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi,

 1975.Definition. The subspace W of V is invariant under $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ if $\mathrm{WT} \subset \mathrm{W}$.

Remark. If $\mathrm{p}(\mathrm{x})$ is a minimal polynomial for T over F and if T satisfies a polynomial $h(x)$, then $p(x) \mid h(x)$.

Theorem 1. If $\mathrm{W} \subset \mathrm{V}$ is invariant under T , then T induces a linear transformation $\overline{\mathrm{T}}$ on V / W, defined by $(\mathrm{v}+\mathrm{W}) \overline{\mathrm{T}}=\mathrm{vT}+\mathrm{W}$. If T satisfies the polynomial $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$, then so does $\overline{\mathrm{T}}$. If $\mathrm{p}_{1}(x)$ is the minimal polynomial for $\overline{\mathrm{T}}$ over F and if $p(x)$ is that for T, then $p_{1}(x) \mid p(x)$.

Proof. Suppose $\overline{\mathrm{V}}=\mathrm{V} / \mathrm{W}$ then the elements of $\overline{\mathrm{V}}$ are the cosets of $\mathrm{v}+\mathrm{W}$ of W in V.

Let $\overline{\mathrm{v}}=\mathrm{v}+\mathrm{W} \in \overline{\mathrm{V}}$ which is defined as

$$
\overline{\mathrm{v}} \overline{\mathrm{~T}}=\mathrm{vT}+\mathrm{W} .
$$

To show that $\overline{\mathrm{T}}$ is a linear transformation, firstly we show that $\overline{\mathrm{T}}$ is well-defined on $\overline{\mathrm{V}}$.

Suppose $\overline{\mathrm{v}}=\mathrm{v}_{1}+\mathrm{W}=\mathrm{v}_{2}+\mathrm{W}$, where $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}$.

Now, we show that $\mathrm{v}_{1} \mathrm{~T}+\mathrm{W}=\mathrm{v}_{2} \mathrm{~T}+\mathrm{W}$.

Since $v_{1}+W=v_{2}+W$, then

$$
\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)+\mathrm{W}=\mathrm{W}
$$

$\Rightarrow \quad\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \in \mathrm{W}$.

Since W is invariant under T and so

$$
\mathrm{WT} \subset \mathrm{~W} .
$$

And so $\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \mathrm{T} \in \mathrm{W}$
$\Rightarrow \quad\left(\mathrm{v}_{1} \mathrm{~T}-\mathrm{v}_{2} \mathrm{~T}\right) \in \mathrm{W} \quad$ [Since T is linear transformation]
$\Rightarrow \quad\left(\mathrm{v}_{1} \mathrm{~T}-\mathrm{v}_{2} \mathrm{~T}\right)+\mathrm{W}=\mathrm{W}$
$\Rightarrow \quad \mathrm{v}_{1} \mathrm{~T}+\mathrm{W}=\mathrm{v}_{2} \mathrm{~T}+\mathrm{W}$
$\Rightarrow \quad \overline{\mathrm{T}}$ is well-defined on $\overline{\mathrm{V}}$.

Now, we prove that $\overline{\mathrm{T}}$ is a linear transformation.
(i) We show that

$$
\begin{array}{r}
\left\{\left(\mathrm{v}_{1}+\mathrm{W}\right)+\left(\mathrm{v}_{2}+\mathrm{W}\right)\right\} \overline{\mathrm{T}}=\left(\mathrm{v}_{1}+\mathrm{W}\right) \overline{\mathrm{T}}+\left(\mathrm{v}_{2}+\mathrm{W}\right) \overline{\mathrm{T}}, \\
\text { where } \mathrm{v}_{1}+\mathrm{W}, \mathrm{v}_{2}+\mathrm{W} \in \overline{\mathrm{~V}}
\end{array}
$$

Consider

$$
\left\{\left(\mathrm{v}_{1}+\mathrm{W}\right)+\left(\mathrm{v}_{2}+\mathrm{W}\right)\right\} \overline{\mathrm{T}}=\left\{\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)+\mathrm{W}\right\} \overline{\mathrm{T}}
$$

[By definition of addition in quotient sets]

$$
\begin{aligned}
& =\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{T}+\mathrm{W} \quad[\text { Be definition of } \overline{\mathrm{T}}] \\
& =\left(\mathrm{v}_{1} \mathrm{~T}+\mathrm{v}_{2} \mathrm{~T}\right)+\mathrm{W} \quad[\text { Since } \mathrm{T} \text { is linear transformation }] \\
& =\left(\mathrm{v}_{1} \mathrm{~T}+\mathrm{W}\right)+\left(\mathrm{v}_{2} \mathrm{~T}+\mathrm{W}\right)
\end{aligned}
$$

[By definition of addition in quotient sets]

$$
=\left(\mathrm{v}_{1}+\mathrm{W}\right) \overline{\mathrm{T}}+\left(\mathrm{v}_{2}+\mathrm{W}\right) \overline{\mathrm{T}} \quad[\text { By definition of } \overline{\mathrm{T}}]
$$

i.e. $\left\{\left(\mathrm{v}_{1}+\mathrm{W}\right)+\left(\mathrm{v}_{2}+\mathrm{W}\right)\right\} \overline{\mathrm{T}}=\left(\mathrm{v}_{1}+\mathrm{W}\right) \overline{\mathrm{T}}+\left(\mathrm{v}_{2}+\mathrm{W}\right) \overline{\mathrm{T}}$.
(ii) Now, we prove that

$$
\{\mathrm{c}(\mathrm{v}+\mathrm{W})\} \overline{\mathrm{T}}=\mathrm{c}\{(\mathrm{v}+\mathrm{W}) \overline{\mathrm{T}}\} .
$$

Consider

$$
\begin{array}{rlrl}
\{\mathrm{c}(\mathrm{v}+\mathrm{W})\} \overline{\mathrm{T}} & =(\mathrm{cv}+\mathrm{W}) \overline{\mathrm{T}} & \text { [By definition of scalar multiplication] } \\
& =\mathrm{cvT}+\mathrm{W} & {[\text { By definition of } \overline{\mathrm{T}}]} \\
& =\mathrm{c}(\mathrm{vT}+\mathrm{W}) & & \\
& =\mathrm{c}((\mathrm{v}+\mathrm{W}) \overline{\mathrm{T}}) & {[\text { Sy })}
\end{array}
$$

i.e. $\quad\{\mathrm{c}(\mathrm{v}+\mathrm{W})\} \overline{\mathrm{T}}=\mathrm{c}\{(\mathrm{v}+\mathrm{W}) \overline{\mathrm{T}}\}$.

Hence, $\overline{\mathrm{T}}$ is a linear transformation on $\overline{\mathrm{V}}$.

Now, $\overline{\mathrm{v}}=\mathrm{v}+\mathrm{W} \in \overline{\mathrm{V}}$.

Then $\quad \bar{v}\left(\overline{\mathrm{~T}}^{2}\right)=v \mathrm{~T}^{2}+\mathrm{W}$

$$
\begin{aligned}
& =(\mathrm{vT}) \mathrm{T}+\mathrm{W} \\
& =(\mathrm{vT}+\mathrm{W}) \overline{\mathrm{T}} \\
& =(\mathrm{v}+\mathrm{W}) \overline{\mathrm{T}} \overline{\mathrm{~T}} \\
& =(\mathrm{v}+\mathrm{W})(\overline{\mathrm{T}})^{2} \\
& =\overline{\mathrm{v}}(\overline{\mathrm{~T}})^{2}
\end{aligned}
$$

i.e. $\quad \overline{\mathrm{v}}\left(\overline{\mathrm{T}}^{2}\right)=\overline{\mathrm{v}}(\overline{\mathrm{T}})^{2}$.
$\Rightarrow \quad\left(\overline{\mathrm{T}}^{2}\right)=(\overline{\mathrm{T}})^{2}$.

Similarly, $\left(\overline{\mathrm{T}}^{\mathrm{k}}\right)=(\overline{\mathrm{T}})^{k}$ for any $\mathrm{k} \geq 0$.

Consequently, for any polynomial $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$,

$$
\overline{q(T)}=q(\overline{\mathrm{~T}}) .
$$

For any $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ with $\mathrm{q}(\mathrm{T})=0$, since $\overline{0}$ is zero transformation on $\overline{\mathrm{V}}$,

$$
0=\overline{q(T)}=q(\overline{\mathrm{~T}}) .
$$

Suppose $p_{1}(x)$ be the minimal polynomial over F satisfied by $\overline{\mathrm{T}}$.
If $q(\bar{T})=0$, for $q(x) \in F[x]$, then $p_{1}(x) \mid q(x)$.
If $p(x)$ is the minimal polynomial for T over F, then $p(T)=0$, hence $\mathrm{p}(\overline{\mathrm{T}})=0$ and so $\mathrm{p}_{1}(\mathrm{x}) \mid \mathrm{p}(\mathrm{x})$.

Hence proved.

