M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - V

Reference Book : • I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi, 1975.

Definition. The subspace W of V is invariant under $T \in A(V)$ if $WT \subset W$.

Remark. If p(x) is a minimal polynomial for T over F and if T satisfies a polynomial h(x), then p(x) | h(x).

Theorem 1. If $W \subset V$ is invariant under T, then T induces a linear transformation \overline{T} on V/W, defined by $(v + W)\overline{T} = vT + W$. If T satisfies the polynomial $q(x) \in F[x]$, then so does \overline{T} . If $p_1(x)$ is the minimal polynomial for \overline{T} over F and if p(x) is that for T, then $p_1(x) | p(x)$.

Proof. Suppose $\overline{V} = V/W$ then the elements of \overline{V} are the cosets of v + W of W in V.

Let $\overline{v} = v + W \in \overline{V}$ which is defined as

$$\overline{\mathbf{v}} \ \overline{\mathbf{T}} = \mathbf{v}\mathbf{T} + \mathbf{W}.$$

To show that \overline{T} is a linear transformation, firstly we show that \overline{T} is well-defined on \overline{V} .

Suppose $\overline{v} = v_1 + W = v_2 + W$, where $v_1, v_2 \in V$.

Now, we show that $v_1T + W = v_2T + W$.

Since $v_1 + W = v_2 + W$, then

 $(\mathbf{v}_1 - \mathbf{v}_2) + \mathbf{W} = \mathbf{W}$

$$\Rightarrow \qquad (\mathbf{v}_1 - \mathbf{v}_2) \in \mathbf{W}.$$

Since W is invariant under T and so

 $WT \subset W.$

And so $(v_1 - v_2)T \in W$

 $\Rightarrow \quad (v_1T - v_2T) \in W \qquad [Since T is linear transformation]$

$$\Rightarrow$$
 $(v_1T - v_2T) + W = W$

$$\Rightarrow v_1T + W = v_2T + W$$

 \Rightarrow \overline{T} is well-defined on \overline{V} .

Now, we prove that \overline{T} is a linear transformation.

$$\{(\mathbf{v}_1 + \mathbf{W}) + (\mathbf{v}_2 + \mathbf{W})\}\overline{\mathbf{T}} = (\mathbf{v}_1 + \mathbf{W})\overline{\mathbf{T}} + (\mathbf{v}_2 + \mathbf{W})\overline{\mathbf{T}},$$

where $\mathbf{v}_1 + \mathbf{W}, \mathbf{v}_2 + \mathbf{W} \in \overline{\mathbf{V}}$

Consider

$$\{(v_1 + W) + (v_2 + W)\}\overline{T} = \{(v_1 + v_2) + W\}\overline{T}$$

[By definition of addition in quotient sets]

$$= (v_1 + v_2)T + W$$
 [Be definition of T]

 $= (v_1T + v_2T) + W$ [Since T is linear transformation]

$$=(v_1T + W) + (v_2T + W)$$

[By definition of addition in quotient sets]

(ii)	Now, we prove that	
	$\{c(v+W)\}\overline{T}=c\{(v+W)\overline{T}\}.$	
Consider		
	${c(v+W)} \overline{T} = (cv+W)\overline{T}$	[By definition of scalar multiplication]
	= cvT + W	[By definition of \overline{T}]
	= c(vT + W)	[Since T is linear]
	$= c((v + W)\overline{T})$	[By definition of \overline{T}]
i.e.	$\{c(v+W)\}\overline{T} = c\{(v+W)\overline{T}\}.$	
Hence, \overline{T} is a linear transformation on \overline{V} .		
Now, $\overline{\mathbf{v}} = \mathbf{v} + \mathbf{W} \in \overline{\mathbf{V}}$.		
Then	$\overline{\mathbf{v}}(\overline{\mathbf{T}}^2) = \mathbf{v}\mathbf{T}^2 + \mathbf{W}$	[By definition]
	= (vT)T + W	
	$= (vT + W)\overline{T}$	
	$= (v + W) \overline{T} \overline{T}$	[By definition of \overline{T}]
	$=(v+W)(\overline{T})^2$	
	$= \overline{\mathbf{v}}(\overline{\mathbf{T}})^2$.	

i.e. $\{(v_1 + W) + (v_2 + W)\}\overline{T} = (v_1 + W)\overline{T} + (v_2 + W)\overline{T}$.

 $= (v_1 + W)\overline{T} + (v_2 + W)\overline{T} \qquad [By definition of \overline{T}]$

i.e. $\overline{v}(\overline{T}^2) = \overline{v}(\overline{T})^2$.

$$\Rightarrow \quad (\overline{\mathrm{T}}^2) = (\overline{\mathrm{T}})^2.$$

Similarly, $(\overline{T}^k) = (\overline{T})^k$ for any $k \ge 0$.

Consequently, for any polynomial $q(x) \in F[x]$,

$$\overline{q(T)} = q(\overline{T})$$
.

For any $q(x) \in F[x]$ with q(T) = 0, since $\overline{0}$ is zero transformation on \overline{V} ,

$$0 = \overline{q(T)} = q(\overline{T}).$$

Suppose $p_1(x)$ be the minimal polynomial over F satisfied by \overline{T} .

If $q(\overline{T}) = 0$, for $q(x) \in F[x]$, then $p_1(x) | q(x)$.

If p(x) is the minimal polynomial for T over F, then p(T) = 0,

hence $p(\overline{T}) = 0$ and so $p_1(x) | p(x)$.

Hence proved.