M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - V

- Reference Book : P.B.Bhattacharya, S.K. Jain and S.R Nagpaul, *Basic Abstract Algebra* (2nd Edition), Cambridge University Press, Indian Edition, 1997.
 - C. Musili, *Introduction to Rings and Modules*, Second Revised Edition, Narosa Publishing House, New Delhi.
 - I.N. Herstein, Topics in Algebra, Wiley Easter Ltd., New Delhi, 1975.

Definition. Given $T \in A(V)$. A non-trivial polynomial $p(x) \in F[x]$ of lowest degree with the property that p(T) = 0 is called a minimal polynomial for T over the field F.

Theorem 1. If V is finite dimensional over F, then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.

Proof. Suppose $p(x) = \alpha_0 + \alpha_1 x + ... + \alpha_k x^k$, $\alpha_k \neq 0$ be the minimal polynomial for T over F. Then p(T) = 0.

I Part : Suppose the constant term of p(x), i.e. $\alpha_0 \neq 0$. Then we have to show that $T \in A(V)$ is invertible.

Since p(T) = 0 and so

$$\alpha_k T^k + \alpha_{k-1} T^{k-1} + \ldots + \alpha_1 T + \alpha_0 = 0$$

 $\alpha_0 = -\left(\alpha_k T^k + \alpha_{k-1} T^{k-1} + \ldots + \alpha_1 T\right)$

or

or
$$1 = -\frac{1}{\alpha_0} (\alpha_k T^k + \alpha_{k-1} T^{k-1} + ... + \alpha_1 T)$$

or
$$1 = \left\{ -\frac{1}{\alpha_0} \left(\alpha_k T^{k-1} + \alpha_{k-1} T^{k-2} + ... + \alpha_1 \right) \right\} T$$

or
$$\left\{-\frac{1}{\alpha_0}\left(\alpha_k T^{k-1} + \alpha_{k-1} T^{k-2} + ... + \alpha_1\right)\right\} T = 1$$

or
$$ST = 1$$
, where $S = -\frac{1}{\alpha_0} (\alpha_k T^{k-1} + \alpha_{k-1} T^{k-2} + ... + \alpha_1)$

or
$$S = T^{-1}$$

i.e., S acts as inverse of T.

Hence, T is invertible.

II Part : Suppose that T is invertible. Then we have to show that constant term of the minimal polynomial p(x), i.e., $\alpha_0 \neq 0$.

Suppose on the contrary that $\alpha_0 = 0$. Then we have

$$\alpha_1 T + \alpha_1 T^2 + \ldots + \alpha_k T^k = 0$$

or

 $\left(\alpha_1+\alpha_1T+...+\alpha_kT^{k-1}\right)T=0\,.$

Multiplying the above equation by T^{-1} from the right, we have

$$\alpha_1 + \alpha_1 T + ... + \alpha_k T^{k-1} = 0$$
,

Hence, T satisfies the polynomial $q(x) = \alpha_1 + \alpha_1 x + ... + \alpha_k x^{k-1}$ in F[x].

Now, $deg(q(x)) \le deg(p(x))$, which is contradiction.

Hence, $\alpha_0 \neq 0$.

Hence proved.

Corollary 1. If V is finite dimensional over F and if $T \in A(V)$ is invertible, then T^{-1} is a polynomial expression in T over F.

Proof. Since T is invertible, and so by the above theorem 1,

 $\alpha_0 = -(\alpha_1 T + \alpha_2 T^2 + \ldots + \alpha_k T^k)$

$$\alpha_0 + \alpha_1 T + \ldots + \alpha_k T^k = 0$$
 with $\alpha_0 \neq 0$.

Then

 $1 = -\frac{1}{\alpha_0} \left(\alpha_1 T + \alpha_2 T^2 + \ldots + \alpha_k T^k \right)$

or

or

$$\mathbf{T}^{-1} = -\frac{1}{\alpha_0} \Big(\alpha_1 + \alpha_2 \mathbf{T} + \ldots + \alpha_k \mathbf{T}^{k-1} \Big).$$

Hence, T^{-1} is a polynomial expression in T over F.

Corollary 2. If V is finite dimensional over F and if $T \in A(V)$ is singular, then there exists an $S \neq 0$ in A(V) such that ST = TS = 0.

Proof. Since T is singular, i.e., not regular and so by the above theorem 1, the constant term of its minimal polynomial must be 0.

That is, $p(x) = \alpha_1 x + \ldots + \alpha_k x^k$.

Also, $p(T) = \alpha_1 T + \alpha_2 T^2 + ... + \alpha_k T^k$.

If $S = \alpha_1 + \alpha_2 T + ... + \alpha_k T^{k-1}$, then

 $S \neq 0$ (since $\alpha_1 + \alpha_2 x + ... + \alpha_k x^{k-1}$ is of lower degree than p(x)) and

ST = TS = 0.

Corollary 3. If V is finite dimensional over F and if $T \in A(V)$ is right invertible, then it is invertible.

Proof. Suppose T is right invertible and so TU = 1 for some $U \in A(V)$.

We have to show that T is invertible.

Suppose on the contrary that T is singular, then by corollary 2, there exists an $S \neq 0$ such that ST = TS = 0.

However, $0 = (ST)U = S(TU) = S1 = S \neq 0$, which is a contradiction.

Hence, T is regular.

Theorem 2. If V is finite dimensional over F, then $T \in A(V)$ is singular if and only if there exists a $v \neq 0$ in V such that vT = 0.

Proof. By corollary 2, T is singular if and only if there is an $S \neq 0$ in A(V) such that ST = TS = 0.

Since $S \neq 0$ there is an element $w \in V$ such that $wS \neq 0$.

Let v = wS, then

 $\mathbf{vT} = (\mathbf{ws})\mathbf{T} = \mathbf{w}(\mathbf{ST}) = \mathbf{w0} = \mathbf{0}.$

Hence proved.

Conversely, suppose that vT = 0 with $v \neq 0$ in V.

Now, since $S \in A(V)$ and $v \neq 0$ in V and so ST = 0.

Hence by corollary 2, $T \in A(V)$ is singular.