M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - III

Reference Book : P.B.Bhattacharya, S.K. Jain and S.R Nagpaul, *Basic Abstract Algebra* (2nd Edition), Cambridge University Press, Indian Edition, 1997.

Topic : Noetherian and Artinian Modules

Definition : An R-module M is said to satisfy the Ascending Chain Condition (ACC) if given any chain $M_1 \subseteq M_2 \subseteq ... \subseteq M_{n+1} \subseteq ...$ of submodules of M, there exists $m \in N$ such that $M_n = M_m$ for all $n \ge m$.

Definition : An R-module M is said to satisfy the **Descending Chain Condition** (**DCC**) if given any chain $M_1 \supseteq M_2 \supseteq ... \supseteq M_{n+1} \supseteq ...$ of submodules of M, there exists $m \in N$ such that $M_n = M_m$ for all $n \ge m$.

Definition : An R-module M is called **Noetherian** if for every ascending sequence of R-submodules of M, $M_1 \subset M_2 \subset M_3 \subset \dots$ there exists a postive integer k such that $M_k = M_{k+1} = M_{k+2} = \dots$

In other words, if M is noetherian, then we say that the ascending chain condition for submodules holds in M.

Or

An R-module M is noetherian if M has ACC for submodules of M.

Definition : An R-module M is called **Artinian** if for every descending sequence of R-submodules of M, $M_1 \supset M_2 \supset M_3 \supset \ldots$ there exists a postive integer k such that $M_k = M_{k+1} = M_{k+2} = \ldots$

Noetherian and Artinian Modules Page 1 of 5 - Dr. Arihant Jain (98266-55655)

In other words, if M is artinian, then we say that the descending chain condition for submodules holds in M.

Or

An R-module M is artinian if M has DCC for submodules of M.

Theorem. For an R-module M, the following are equivalent :

- (i) M is noetherian.
- (ii) Every submodule of M is finitely generated.
- (iii) Every non-empty set S of submodules of M has a maximal element (i.e. a submodule M_0 in S such that for any submodule N_0 in S with $N_0 \supset M_0$, we have $N_0 = M_0$).

Proof. (i) \Rightarrow (ii) : Suppose M is noetherian, i.e., M has ascending chain condition for submodules. Then we have to show that every submodule of M is finitely generated.

Suppose N be a submodule of M.

Suppose on the contrary that N is not finitely generated.

For any positive integer k, suppose $a_1, a_2, ..., a_k \in N$, then

$$\mathbf{N}\neq(\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k).$$

Choose $a_{k+1} \in N$ such that

$$a_{k+1} \notin (a_1, a_2, ..., a_k)$$

We then obtain an infinite properly ascending chain

$$a_1 \notin (a_1, a_2) \notin (a_1, a_2, a_3) \notin \dots \notin (a_1, \dots, a_{k+1}) \notin \dots$$

of submodules of M, which is a contradiction.

Noetherian and Artinian Modules Page 2 of 5 - Dr. Arihant Jain (98266-55655)

Hence, N is finitely generated.

Since N is arbitrary, hence, every submodule of M is finitely generated.

(ii) \Rightarrow (iii) : Suppose every submodule of M is finitely generated. Then we have to show that every non-empty set S of submodules of M has a maximal element.

Let N_0 be an element of S.

If N_0 is not maximal, it is properly contained in a submodule $N_1 \in S$.

If N_1 is not maximal, then N_1 is properly contained in a submodule $N_2 \in S$.

In case, S has no maximal element, we obtain an infinite properly ascending chain of submodules $N_0 \subset N_1 \subset N_2 \subset ...$ of M.

Let $N = \bigcup_{i} N_{i}$.

Then we have to show that N is submodule of M.

Consider $x, y \in \bigcup_{i} N_i$ and $r \in R$.

Then, $x\in N_{\mu}$ and $y\in N_{\nu}$ for some μ and $\nu.$

Since either $N_{\mu} \subset N_{\nu}$ or $N_{\nu} \subset N_{\mu}$ and so both x and y lie in one submodule N_{μ} or N_{ν} .

And hence x - y and r.x lie in one submodule.

This implies that $x - y \in N$ and $r.x \in N$.

Hence, N is submodule of M.

 \Rightarrow N is finitely generated. (By hypothesis)

So there exists elements $a_1, a_2, ..., a_n \in N$ such that

Noetherian and Artinian Modules Page 3 of 5 - Dr. Arihant Jain (98266-55655)

$$N = (a_1, a_2, ..., a_n).$$

Now, a_1, a_2, \ldots, a_n belongs to a finite number of submodules N_i , $i = 1, 2, \ldots$.

Hence, there exists N_k such that all a_i , $1 \le i \le n$ lie in a_k .

Since $N_k \subset N$ and N is the smallest submodule containing all a_i , $1 \le i \le n$, it follows that $N_k = N$.

But then $N_k = N_{k+1} = N_{k+2} = ... = N$, which is a contradiction, since S has no maximal element.

Hence, S has a maximal element.

(iii) \Rightarrow (i) : Suppose every non-empty set of submodules of M has a maximal element. Then we have to show that M is noetherian.

Suppose we have an ascending sequence of submodules of M,

$$M_1 \subset M_2 \subset M_3 \subset \ldots$$

By hypothesis, the sequence M_1, M_2, \dots has a maximal element, say, M_k .

Then $M_k = M_{k+1} = M_{k+2} = \dots$ for $k \ge 1$.

Hence, M has ACC for submodules.

Thus, M is noetherian.

Hence proved.

Theorem : Every submodule of a noetherian module is also a noetherian module.

Proof. Suppose M be a noetherian module and suppose L be a submodule of M.

Then we have to show that L is noetherian.

Suppose U be a submodule of L, then U is a also a submodule of M.

It follows that U is finitely generated. (:: If M is noetherian, then every submodule of M is finitely generated)

Since U is arbitrary and so every submodule of L is finitely generated.

Hence, L is a noetherian module.

(: If every submodule of M is finitely generated, then M is noetherian)

Since L is arbitrary and so every submodule of a noetherian module is noetherian.

Hence proved.