
The z-transform
See Oppenheim and Schafer, Second Edition pages 94–139, or First Edition

pages 149–201.

1 Introduction

The z-transform of a sequencexŒn� is

X.z/ D

1
X

nD�1

xŒn�z�n:

The z-transform can also be thought of as an operatorZf�g that transforms a

sequence to a function:

ZfxŒn�g D

1
X

nD�1

xŒn�z�n D X.z/:

In both casesz is a continuous complex variable.

We may obtain the Fourier transform from the z-transform by making the

substitutionz D ej! . This corresponds to restrictingjzj D 1. Also, with

z D rej! ,

X.rej!/ D

1
X

nD�1

xŒn�.rej!/�n D

1
X

nD�1

.xŒn�r�n/ e�j!n:

That is, the z-transform is the Fourier transform of the sequencexŒn�r�n. For

r D 1 this becomes the Fourier transform ofxŒn�. The Fourier transform

therefore corresponds to the z-transform evaluated on the unit circle:
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z D ej!

The inherent periodicity in frequency of the Fourier transform is captured

naturally under this interpretation.

The Fourier transform does not converge for all sequences — the infinite sum

may not always be finite. Similarly, the z-transform does notconverge for all

sequences or for all values ofz. The set of values ofz for which the

z-transform converges is called theregion of convergence (ROC).

The Fourier transform ofxŒn� exists if the sum
P1

nD�1 jxŒn�j converges.

However, the z-transform ofxŒn� is just the Fourier transform of the sequence

xŒn�r�n. The z-transform therefore exists (or converges) if

X.z/ D

1
X

nD�1

jxŒn�r�nj <1:

This leads to the condition

1
X

nD�1

jxŒn�jjzj�n <1

for the existence of the z-transform. The ROC therefore consists of a ring in

the z-plane:
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In specific cases the inner radius of this ring may include theorigin, and the

outer radius may extend to infinity. If the ROC includes the unit circle jzj D 1,

then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

X.z/ D
P.z/

Q.z/
;

whereP.z/ andQ.z/ are polynomials inz. The values ofz for which

P.z/ D 0 are called thezerosof X.z/, and the values withQ.z/ D 0 are

called thepoles. The zeros and poles completely specifyX.z/ to within a

multiplicative constant.

Example: right-sided exponential sequence
Consider the signalxŒn� D anuŒn�. This has the z-transform

X.z/ D

1
X

nD�1

anuŒn�z�n D

1
X

nD0

.az�1/n:

Convergence requires that

1
X

nD0

jaz�1jn <1;

which is only the case ifjaz�1j < 1, or equivalentlyjzj > jaj. In the ROC, the
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series converges to

X.z/ D

1
X

nD0

.az�1/n D
1

1 � az�1
D

z

z � a
; jzj > jaj;

since it is just a geometric series. The z-transform has a region of convergence

for any finite value ofa.

z−plane Im

Re

unit circle

1

a

The Fourier transform ofxŒn� only exists if the ROC includes the unit circle,

which requires thatjaj < 1. On the other hand, ifjaj > 1 then the ROC does

not include the unit circle, and the Fourier transform does not exist. This is

consistent with the fact that for these values ofa the sequenceanuŒn� is

exponentially growing, and the sum therefore does not converge.

Example: left-sided exponential sequence
Now consider the sequencexŒn� D �anuŒ�n� 1�. This sequence is left-sided

because it is nonzero only forn � �1. The z-transform is

X.z/ D

1
X

nD�1

�anuŒ�n � 1�z�n D �

�1
X

nD�1

anz�n

D �

1
X

nD1

a�nzn D 1 �

1
X

nD0

.a�1z/n:
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For ja�1zj < 1, or jzj < jaj, the series converges to

X.z/ D 1 �
1

1 � a�1z
D

1

1 � az�1
D

z

z � a
; jzj < jaj:

Im

Re

z−plane

unit circle

1

a

Note that the expression for the z-transform (and the pole zero plot) is exactly
the same as for the right-handed exponential sequence —only the region of

convergence is different. Specifying the ROC is therefore critical when dealing
with the z-transform.

Example: sum of two exponentials
The signalxŒn� D

�

1
2

�n
uŒn�C

�

�1
3

�n
uŒn� is the sum of two real exponentials.

The z-transform is

X.z/ D

1
X

nD�1

��

1

2

�n

uŒn�C

�

�
1

3

�n

uŒn�

�

z�n

D

1
X

nD�1

�

1

2

�n

uŒn�z�n C

1
X

nD�1

�

�
1

3

�n

uŒn�z�n

D

1
X

nD0

�

1

2
z�1

�n

C

1
X

nD0

�

�
1

3
z�1

�n

:

From the example for the right-handed exponential sequence, the first term in
this sum converges forjzj > 1=2, and the second forjzj > 1=3. The combined
transformX.z/ therefore converges in the intersection of these regions, namely
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whenjzj > 1=2. In this case

X.z/ D
1

1 � 1
2
z�1
C

1

1C 1
3
z�1
D

2z.z � 1
12

/

.z � 1
2
/.z C 1

3
/
:

The pole-zero plot and region of convergence of the signal is

Im

Re

z−plane

unit circle

1

1
2

1
12

�1
3

Example: finite length sequence
The signal

xŒn� D

8

<

:

an 0 � n � N � 1

0 otherwise

has z-transform

X.z/ D

N �1
X

nD0

anz�n D

N �1
X

nD0

.az�1/n

D
1 � .az�1/N

1 � az�1
D

1

zN �1

zN � aN

z � a
:

Since there are only a finite number of nonzero terms the sum always

converges whenaz�1 is finite. There are no restrictions ona (jaj <1), and
the ROC is the entire z-plane with the exception of the originz D 0 (where the

terms in the sum are infinite). TheN roots of the numerator polynomial are at

zk D aej.2�k=N /; k D 0; 1; : : : ; N � 1;
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