The z-transform

See Oppenheim and Schafer, Second Edition pages 94-139, or First Edition pages 149-201.

1 Introduction

The z-transform of a sequence $x[n]$ is

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

The z-transform can also be thought of as an operator $\mathcal{Z}\{\cdot\}$ that transforms a sequence to a function:

$$
\mathcal{Z}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=X(z)
$$

In both cases z is a continuous complex variable.
We may obtain the Fourier transform from the z-transform by making the substitution $z=e^{j \omega}$. This corresponds to restricting $|z|=1$. Also, with $z=r e^{j \omega}$,

$$
X\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n}=\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n}
$$

That is, the z-transform is the Fourier transform of the sequence $x[n] r^{-n}$. For $r=1$ this becomes the Fourier transform of $x[n]$. The Fourier transform therefore corresponds to the z-transform evaluated on the unit circle:

The inherent periodicity in frequency of the Fourier transform is captured naturally under this interpretation.

The Fourier transform does not converge for all sequences - the infinite sum may not always be finite. Similarly, the z-transform does not converge for all sequences or for all values of z. The set of values of z for which the z -transform converges is called the region of convergence (ROC).
The Fourier transform of $x[n]$ exists if the sum $\sum_{n=-\infty}^{\infty}|x[n]|$ converges. However, the z -transform of $x[n]$ is just the Fourier transform of the sequence $x[n] r^{-n}$. The z-transform therefore exists (or converges) if

$$
X(z)=\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty .
$$

This leads to the condition

$$
\sum_{n=-\infty}^{\infty}|x[n]||z|^{-n}<\infty
$$

for the existence of the z -transform. The ROC therefore consists of a ring in the z -plane:

In specific cases the inner radius of this ring may include the origin, and the outer radius may extend to infinity. If the ROC includes the unit circle $|z|=1$, then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

$$
X(z)=\frac{P(z)}{Q(z)},
$$

where $P(z)$ and $Q(z)$ are polynomials in z. The values of z for which $P(z)=0$ are called the zeros of $X(z)$, and the values with $Q(z)=0$ are called the poles. The zeros and poles completely specify $X(z)$ to within a multiplicative constant.

Example: right-sided exponential sequence

Consider the signal $x[n]=a^{n} u[n]$. This has the z-transform

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} .
$$

Convergence requires that

$$
\sum_{n=0}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

which is only the case if $\left|a z^{-1}\right|<1$, or equivalently $|z|>|a|$. In the ROC, the
series converges to

$$
X(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|>|a|,
$$

since it is just a geometric series. The z -transform has a region of convergence for any finite value of a.

The Fourier transform of $x[n]$ only exists if the ROC includes the unit circle, which requires that $|a|<1$. On the other hand, if $|a|>1$ then the ROC does not include the unit circle, and the Fourier transform does not exist. This is consistent with the fact that for these values of a the sequence $a^{n} u[n]$ is exponentially growing, and the sum therefore does not converge.

Example: left-sided exponential sequence

Now consider the sequence $x[n]=-a^{n} u[-n-1]$. This sequence is left-sided because it is nonzero only for $n \leq-1$. The z-transform is

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}-a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n} \\
& =-\sum_{n=1}^{\infty} a^{-n} z^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n}
\end{aligned}
$$

For $\left|a^{-1} z\right|<1$, or $|z|<|a|$, the series converges to

$$
X(z)=1-\frac{1}{1-a^{-1} z}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|<|a|
$$

Note that the expression for the z-transform (and the pole zero plot) is exactly the same as for the right-handed exponential sequence - only the region of convergence is different. Specifying the ROC is therefore critical when dealing with the z-transform.

Example: sum of two exponentials

The signal $x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]$ is the sum of two real exponentials. The z -transform is

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}\left\{\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]\right\} z^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} u[n] z^{-n}+\sum_{n=-\infty}^{\infty}\left(-\frac{1}{3}\right)^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n} .
\end{aligned}
$$

From the example for the right-handed exponential sequence, the first term in this sum converges for $|z|>1 / 2$, and the second for $|z|>1 / 3$. The combined transform $X(z)$ therefore converges in the intersection of these regions, namely
when $|z|>1 / 2$. In this case

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)} .
$$

The pole-zero plot and region of convergence of the signal is

Example: finite length sequence

The signal

$$
x[n]= \begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

has z-transform

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n} \\
& =\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a} .
\end{aligned}
$$

Since there are only a finite number of nonzero terms the sum always converges when $a z^{-1}$ is finite. There are no restrictions on $a(|a|<\infty)$, and the ROC is the entire z -plane with the exception of the origin $z=0$ (where the terms in the sum are infinite). The N roots of the numerator polynomial are at

$$
z_{k}=a e^{j(2 \pi k / N)}, \quad k=0,1, \ldots, N-1,
$$

