The z-transform

See Oppenheim and Schafer, Second Edition pages 94—-13&stdEdition
pages 149-201.

1 Introduction

The z-transform of a sequeng§:] is

oo

X(z) = Z x[n]z7".

n=—oo

The z-transform can also be thought of as an opet&teythat transforms a
sequence to a function:

o

Zixly = > x[n)z" = X(2).

n=—oo
In both cases is a continuous complex variable.

We may obtain the Fourier transform from the z-transform lakimg the
substitutionz = ¢/¢. This corresponds to restricting| = 1. Also, with
z =rel?,

o

o0
X(re’®) = Z x[n](re/®)™" = Z (x[n]r™™) e~ 7",
n=-—o0 n=-—o0
That is, the z-transform is the Fourier transform of the segex[n]r~". For
r = 1 this becomes the Fourier transformudf:]. The Fourier transform
therefore corresponds to the z-transform evaluated onrtieitcle:
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The inherent periodicity in frequency of the Fourier tramsf is captured
naturally under this interpretation.

The Fourier transform does not converge for all sequencese-nfinite sum
may not always be finite. Similarly, the z-transform doesacutverge for all
sequences or for all values of The set of values af for which the
z-transform converges is called thegion of convergence (ROC)

o .¢]

The Fourier transform of [1] exists if the sund_ .~ __ |x[n]| converges.
However, the z-transform ofn] is just the Fourier transform of the sequence
x[n]r™". The z-transform therefore exists (or converges) if

o .¢]

X(z) = Z |x[n]r™"| < oc.

n=—oo

This leads to the condition

oo

S iz < oo

n=—oo

for the existence of the z-transform. The ROC thereforeistgef a ring in
the z-plane:
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In specific cases the inner radius of this ring may includeotiigin, and the
outer radius may extend to infinity. If the ROC includes thé& amcle |z| = 1,
then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

P(z)

Q(z)’

whereP(z) andQ(z) are polynomials irx. The values ot for which
P(z) = 0 are called theerosof X(z), and the values witl) (z) = 0 are

called thepoles The zeros and poles completely specifyz) to within a
multiplicative constant.

X(z) =

Example: right-sided exponential sequence
Consider the signat[n] = a"u[n]. This has the z-transform

o

X(z) = Z a"uln]z7" = Z(az_l)”.
n=0

n=—0oo

Convergence requires that

o0
Z laz7 1" < o0,
n=0

which is only the case ifuz~!| < 1, or equivalentlyiz| > |a|. In the ROC, the



series converges to

o0
_ 1 z
X(z) = E (az”')" = = : 1z > |al,
n=0

1 —az1 Z—a

since it is just a geometric series. The z-transform hasiamex convergence
for any finite value ot:.
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The Fourier transform at[n] only exists if the ROC includes the unit circle,
which requires thalz| < 1. On the other hand, itz| > 1 then the ROC does
not include the unit circle, and the Fourier transform dossaxist. This is
consistent with the fact that for these values dhe sequence”u(n] is
exponentially growing, and the sum therefore does not ageve

Example: left-sided exponential sequence

Now consider the sequeneg:] = —a"u[—n — 1]. This sequence is left-sided
because it is nonzero only far< —1. The z-transform is

o0 —1

X(z) = Z —a"u[-n—-1]z7" = — Z a"z™"

n=—oo n=—oo
o0

= — Za_nzn =1- i((l_lz)n.
n=1 n=0



For|a~!z| < 1, or|z| < |a|, the series converges to

X(@)=1-— : : 2] < lal
z)y=1-— = = , z al.
1—a1z 1 —az! Z—a
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Note that the expression for the z-transform (and the pole @et) is exactly
the same as for the right-handed exponential sequenosly-the region of
convergence is different. Specifying the ROC is therefore critical when dealing
with the z-transform.

Example: sum of two exponentials
The signalx[n] = ()" u[n] + (—%)" u[n] is the sum of two real exponentials.
The z-transform is

v 3552 (-1 ]

n=—oo
oo
1

- (E)nu[n]z_”—k i (—%)nu[n]z_”

n=—oo n=—oo
> (1 TSN ] 7

_ -1 -1

_Z(zz ) +Z(_§Z ) _

n=0 n=0

From the example for the right-handed exponential sequéinedirst term in

this sum converges fgr| > 1/2, and the second fQe| > 1/3. The combined
transformX(z) therefore converges in the intersection of these regicarmgty



when|z| > 1/2. In this case

e 11
l—3z7tb 14 3z71 (Z——)(Z—|—3)

X(z) = 1l 1 22(2——

The pole-zero plot and region of convergence of the signal is
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Example: finite length sequence
The signal
a’ 0<n<N-1
x[n] = _
0 otherwise

has z-transform

N— N-1
X(z) = Z = Z(az—1>"
1 -

(az™ I)N 1 N —aV

1l —az ! — N1 z—a

Since there are only a finite number of nonzero terms the swayal
converges whenz~! is finite. There are no restrictions an(|a| < oo), and

the ROC is the entire z-plane with the exception of the origia 0 (where the
terms in the sum are infinite). Thé roots of the numerator polynomial are at

zx = ae!®7KIN) -k =0,1,...,N —1,



