8051 INSTRUCTION SET

8051 has about 111 instructions. These can be grouped into the following categories

- Arithmetic Instructions
- Logical Instructions
- Data Transfer instructions
- Boolean Variable Instructions
- Program Branching Instructions

The following nomenclatures for register, data, address and variables are used while write instructions

A: Accumulator

- B: "B" register
- C: Carry bit
- Rn: Register R0 - R7 of the currently selected register bank

Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of RAM ($00-7 \mathrm{FH}$) or it could be in the special function register ($80-\mathrm{FFH}$).
-
@ Ri: 8-bit external or internal RAM address available in register RO or R1. This is used for indirect addressing mode.
-
\#data8: Immediate 8-bit data available in the instruction.

- \#data16: Immediate 16-bit data available in the instruction.

Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP \& ACALL. Jump range is 2 kbyte (one page).

Addr16: 16-bit destination address for long call or long jump.

- Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all conditional jumps.
bit: Directly addressed bit in internal RAM or SFR

Some Simple Instructions:

MOV dest,source
MOV A,\#72H ;A=72H

MOV R4,\#62H ;R4=62H
MOV B,OF9H ;B=the content of F9'th byte of RAM
MOV DPTR,\#7634H
MOV DPL,\#34H
MOV DPH,\#76H
MOV P1,A ;mov A to port 1
Note 1:
MOV A,\#72H $\quad \neq$ MOV A,72H
After instruction "MOV A, 72 H " the content of 72 'th byte of RAM will replace in Accumulator.

Note 2:
MOV A,R3 $\equiv \quad$ MOV A,3

ADD

| A, Source | $; A=A+$ SOURCE |
| :--- | :--- | :--- |
| ADD $A, \# 6$ | $; A=A+6$ |
| ADD $A, R 6$ | $; A=A+R 6$ |

ADD $A, 6 \quad ; A=A+[6]$ or $A=A+R 6$
ADD $\quad \mathrm{A}, \mathrm{OF} 3 \mathrm{H} \quad ; \mathrm{A}=\mathrm{A}+[\mathrm{OF} 3 \mathrm{H}]$
SUBB
A, Source $; A=A-S O U R C E-C$
SUBB A,\#6 ;A=A-6
SUBB $A, R 6 \quad ; A=A+R 6$

MUI \& Div:

- MUL $A B \quad ; B \mid A=A * B$

MOV A,\#25H
MOV B, \#65H
MUL AB
;25H*65H=0E99
; $\mathrm{B}=0 \mathrm{EH}, \mathrm{A}=99 \mathrm{H}$

- DIV $A B \quad ; A=A / B, B=A \bmod B$

MOV A,\#25

MOV B,\#10
DIV $A B \quad ; A=2, B=5$
SETB bit ; bit=1
CLR bit ;bit=0
SETB C ; $\mathrm{CY}=1$
SETB P0.0 ;bit 0 from port $0=1$
SETB P3.7 ;bit 7 from port $3=1$
SETB ACC. 2 ;bit 2 from ACCUMULATOR $=1$
SETB 05 ;set high D5 of RAM loc. 20h
Note:
CLR instruction is as same as
SETB i.e.:

$$
\text { CLR } \quad \text { C } \quad ; \mathrm{CY}=0
$$

But following instruction is only for CLR:
CLR
A $\quad ; \mathrm{A}=0$

DEC byte
;byte=byte-1
INC byte ;byte=byte+1
INC R7
DEC A
DEC $40 \mathrm{H} \quad ;[40]=[40]-1$
RR-RL-RRC-RLC A
EXAMPLE: RR A

RR:
RRC:
RL:
RLC:

ANL - ORL - XRL
Bitwise Logical Operations:
AND, OR, XOR
EXAMPLE:
MOV R5,\#89H
ANL R5,\#08H
CPL A ;1's complement

Example:

L01: CPL | | MOV | A,\#55H ;A=01010101 B |
| :--- | :--- | :--- |
| | | MOV |
| | ACALL | P1,A |
| | SJMP | DELAY |
| | | LO1 |

