

Zeolite process (permutit/boiling stone)

Zeolite are hydrated sodium alumino siticates $Na_2O.Al_2O_3 \times SiO_2.yH_2O.$ (x=2-10 and y=2-6) (inorganic salts). They work as water softners by replacing the calcium and magnesium ions in water with the sodium ions in zeolite.

Zeolite softener

In this process hard water is allowed to pass through a bed of zeolite at a specified rate. Then the sodium ions present in the zeolite bed continuously replace the calcium and magnesium ions present in water and hence the water becomes soft.

 $Na_2Ze + Ca(HCO_3)_2 \rightarrow CaZe + 2NaHCO_3$ $Na_2Ze + Mg(HCO_3)_2 \rightarrow MgZe + 2NaHCO_3$

Regeneration

When the zeolite bed becomes exhausted it requires regeneration. This is achieved by passing 10% NaCl solution through it.

 $CaZe + 2NaCl \rightarrow Na_2Ze + CaCl_2$

Advantages

- 1. Almost complete removal of hardness (10ppm)
- 2. It is compact
- 3. Requires only less time for softening
- 4. No sludge formation since no precipitate is formed
- 5. Can work under pressure also

Disadvantages

- **1. More sodium salt concentration in softened water.**
- 2. Turbidity containing water cannot be used
- **3.** Process exchange only Ca²⁺ and Mg²⁺ ions but cannot exchange HCO₃⁻ and CO₃²⁻ ions. So cannot be used in boilers
- 4. If Fe²⁺ and Mn²⁺ are present in large quantities. They form respective zeolites so zeolites cannot be regerated
- 5. Water consisting of high alkalinity or acidity cannot be used because zeolite is deccomposed