UNIT 1: Sampling and Quantization

Introduction

• Digital representation of analog signals

Analog-to-Digital Encoding

Advantages of Digital Transmissions

Disadvantages of Digital Transmissions

Need of precise time synchronization

Additional hardware for encoding/decoding

Integration of analog and digital data

Sudden degradation in QoS

Incompatible with existing analog facilities

A Typical Digital Communication Link

Fig. 2 Block Diagram

Formatting	Source Coding	Baseband	Baseband Signaling		Equalization	
Predic npling antization se code modulation CM) CM	Predictive coding Block coding Variable length coding Synthesis/analysis coding Lossless compression Lossy compression		PCM waveforms (line codes) Nonreturn-to-zero (NRZ) Return-to-zero (RZ) Phase encoded Multilevel binary <i>M</i> -ary pulse modulation PAM, PPM, PDM		Maximum-likelihood sequence estimation (MLSE) Equalization with filters Transversal or decision feedbac Preset or Adaptive Symbol spaced or fractionally spaced	
Band			Chanı	Channel Coding		
Coherent	Ν	Noncoherent			Waveform Structur	
e shift keying (PSK) Jency shift keying (FSK) litude shift keying (ASK) nuous phase modulation (CPM) ds		bhase shift keying (I hift keying (FSK) hift keying (ASK) phase modulation (se shift keying (DPSK) keying (FSK) keying (ASK) ase modulation (CPM)		lation	Block Convolution Turbo
Synchronization	Multiplexing/M	Iultiple Access		Spreading		Encryption
requency synchronization Phase synchronization Symbol synchronization Frame synchronization Network synchronization	Frequency divisi Time division (TI Code division (C Space division (S Polarization divis	on (FDM/FDMA) DM/TDMA) DM/CDMA) SDMA) sion (PDMA)	Direct Freque Time I Hybrid	sequencing (DS) ency hopping (FH) nopping (TH) ds	I	Block Data stream

Figure 1.3 Basic digital communication transformations.

Basic Digital Communication Transformations

- Formatting/Source Coding
- Transforms source info into digital symbols (digitization)
- Selects compatible waveforms (matching function)
- Introduces redundancy which facilitates accurate decoding despite errors
- It is essential for reliable communication
- Modulation/Demodulation
- Modulation is the process of modifying the info signal to facilitate transmission
- Demodulation reverses the process of modulation. It involves the detection and retrie
 of the info signal
 - Types
 - Coherent: Requires a reference info for detection
 - Noncoherent: Does not require reference phase information

Basic Digital Communication Transformations

- Coding/Decoding
 - Translating info bits to transmitter data symbols
 - Techniques used to enhance info signal so that they are less vulnerable to channel impairment (e.g. noise, fading, jamming, interference)
 - Two Categories
 - Waveform Coding
 - Produces new waveforms with better performance
 - Structured Sequences
- Involves the use of redundant bits to determine the occurrence of error (an sometimes correct it)
- Multiplexing/Multiple Access Is synonymous with resource sharing with other users
- Frequency Division Multiplexing/Multiple Access (FDM/FDMA

Practical Aspects of Sampling

- 1. Sampling Theorem
- 2 .Methods of Sampling
- 3. Significance of Sampling Rate
- 4. Anti-aliasing Filter

5. Applications of Sampling Theorem – PAM/TDM

Sampling

- **Sampling** is the processes of converting continuous-time analog signal, *x_a(t),* into a discrete-time s by taking the "samples" at discrete-time intervals
- Sampling analog signals makes them discrete in time but still continuous valued
- If done properly (*Nyquist theorem* is satisfied), sampling does not introduce distortion
- Sampled values:
- The value of the function at the sampling points
- Sampling interval:
- The time that separates sampling points (interval b/w samples), T_s
- If the signal is slowly varying, then fewer samples per second will be required than if the wavel is rapidly varying
- So, the optimum sampling rate depends on the maximum frequency component present in the signal

Analog-to-digital conversion is (basically) a 2 step process:

- Sampling
 - Convert from continuous-time analog signal $x_a(t)$ to discrete-time continuous value signal $x_a(t)$
- Is obtained by taking the "samples" of $x_a(t)$ at discrete-time intervals, T_s

Quantization

- Convert from discrete-time continuous valued signal to discrete time discrete valued signal

Sampling

ing Rate (or sampling frequency f_s):

The rate at which the signal is sampled, expressed as the number of samples per second eciprocal of the sampling interval), $1/T_s = f_s$

st Sampling Theorem (or Nyquist Criterion):

the sampling is performed at a proper rate, no info is lost about the original signal and it can be operly reconstructed later on

atement:

'If a signal is sampled at a rate at least, but not exactly equal to twice the max frequency onent of the waveform, then the waveform can be exactly reconstructed from the samples without any distortion"

$$f_s \ge 2f_{\max}$$

..... Sampling Theorem

Sampling Theorem for Bandpass Signal - If an analog information signal containing no frequency outside the specified bandwidth W Hz, it may be reconstructed from its samples at a sequence of points spaced 1/(2W) seconds apart with zero-mean squared error.

The minimum sampling rate of (2W) samples per second, for an analog signal bandwidth of W Hz, is called the **Nyquist rate**. The reciprocal of Nyquist rate, 1/(2W), is called the **Nyquist interval**, that is, $T_s = 1/(2W)$.

The phenomenon of the presence of high-frequency component in the spectrum of the original analog signal is called aliasing or simply foldover.

Sampling Theorem

Sampling Theorem for Baseband Signal - A baseband signal having no frequency components higher than f_m Hz may be completely recovered from the knowledge of its samples taken at a rate of at least 2 f_m samples per second, that is, sampling frequency $f_s \ge 2 f_m$.

The minimum sampling rate f_s = 2 f_m samples per second is called the Nyquist sampling rate. A baseband signal having no frequency components higher than f_m Hz is completely described by its sample values at uniform intervals less than or equal to $1/(2f_m)$ seconds apart, that is, the sampling interval $T_s \leq 1/(2f_m)$ seconds.

Methods of Sampling

Ideal sampling an impulse at each sampling instant

Ideal Sampling

- **Is** accomplished by the multiplication of the signal *x(t)* by the uniform train of impulses (comb function)
- Consider the instantaneous sampling of the analog signal *x(t)*

$$x(t) \longrightarrow x_{s}(t) = x(t)x_{\delta}(t)$$

Train of impulse functions select sample values at regular intervals

$$x_{s}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{s})$$

Fourier Series representation:

$$\sum_{n=-\infty}^{\infty} \delta \left(t - n T_s \right) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j n \omega_s t}, \qquad \omega_s = \frac{2 \pi}{T_s}$$

is shows that the Fourier Transform of the sampled signal is the Fourier Transform of the original nal at rate of $1/T_s$

is long as $f_s > 2f_m$, no overlap of repeated replicas $X(f - n/T_s)$ will occur in $X_s(f)$ Alinimum Sampling Condition:

$$f_s - f_m > f_m \implies f_s > 2 f_m$$

 $\frac{1}{f_s} = T_s \leq \frac{1}{2}$

Sampling Theorem: A finite energy function *x(t)* can be completely **reconstructed** from ampled value *x(nTs)* with

$$t = \sum_{n=-\infty}^{\infty} T_s x(nT_s) \begin{cases} \sin\left[\frac{2\pi f(t-nT_s)}{2T_s}\right] \\ \pi (t-nT_s) \end{cases}$$
$$= \sum_{n=-\infty}^{\infty} T_s x(nT_s) \sin c (2 f_s(t-nT_s)) \end{cases}$$

provided that =>

is means that the output is simply the replication of the original signal at discrete intervals, e.g.

T_s is called the *Nyquist interval:* It is the longest time interval that can be used for sampling a bar signal and still allow reconstruction of the signal at the receiver without distortion

Figure 2.6 Sampling theorem using the frequency convolution property of the Fourier transform.

..... Methods of Sampling

Natural sampling - a pulse of short width with varying amplitude with natural tops

Natural Sampling

Natural Sampling

- Each pulse in $x_p(t)$ has width T_s and amplitude $1/T_s$
- The top of each pulse follows the variation of the signal being sampled
- X_s (f) is the replication of X(f) periodically every f_s Hz
- X_s (f) is weighted by $C_n \leftarrow$ Fourier Series Coefficient
- The problem with a natural sampled waveform is that the tops of the sample pulses are not flat
- It is not compatible with a digital system since the amplitude of each sample has infinite number o possible values
- Another technique known as *flat top sampling* is used to alleviate this problem

..... Methods of Sampling

Flat-top sampling - a pulse of short width with varying amplitude with flat tops

Flat-top Sampling

Flat-Top Sampling

- re, the pulse is held to a constant height for the whole sample period
- It top sampling is obtained by the convolution of the signal obtained after ideal mpling with a unity amplitude rectangular pulse, p(t)
- is technique is used to realize *Sample-and-Hold* (S/H) operation
- S/H, input signal is continuously sampled and then the value is held for as long as kes to for the A/D to acquire its value

Taking the Fourier Transform will result to

$$X_{s}(f) = \Im [x_{s}(t)]$$

$$= P(f) \Im \left[x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{s}) \right]$$

$$= P(f) \Im \left[X(f) * \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} \delta(f - nf_{s}) \right]$$

$$= P(f) \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} X(f - nf_{s})$$

where *P(f)* is a *sinc* function

Flat top sampling (Frequency Domain)

Flat top sampling becomes identical to ideal sampling as the width of the pulses become shorter

Recovering the Analog Signal

One way of recovering the original signal from sampled signal $X_s(f)$ is to pass it through a Low Pass ilter (LPF) as shown below

Significance of Sampling Rate

When f_s < 2f_m, spectral components of adjacent samples will overlap, known as aliasing

An Illustration of Aliasing

Undersampling and Aliasing

If the waveform is *undersampled* (i.e. *fs < 2B*) then there will be *spectral overlap* in the sample signal

e signal at the output of the filter will be different from the original signal spectrum

This is the outcome of *aliasing*!

is implies that whenever the sampling condition is not met, an irreversible overlap of the spectral licas is produced

This could be due to:

- 1. x(t) containing higher frequency than were expected
- 2. An error in calculating the sampling rate

Under normal conditions, undersampling of signals causing aliasing is not recommended

Solution 1: Anti-Aliasing Analog Filter

- All physically realizable signals are not completely bandlimited
- If there is a significant amount of energy in frequencies above half the sampling frequency $(f_s/2)$, aliasing will occur
- Aliasing can be prevented by first passing the analog signal through an anti-aliasing filter (als called a prefilter) before sampling is performed
- The anti-aliasing filter is simply a LPF with cutoff frequency equal to half the sample rate

Antialiasing Filter

An anti-aliasing filter is a *low-pass filter* of sufficient higher order which is recommended to be used prior to sampling.

Minimizing Aliasing

Aliasing is prevented by forcing the bandwidth of the sampled signal to satisfy the requirement of the Sampling Theorem

Solution 2: Over Sampling and Filtering in the Digital Domain

- The signal is passed through a low performance (less costly) analog low-pass filter to lim the bandwidth.
- Sample the resulting signal at a high sampling frequency.
- The digital samples are then processed by a high performance digital filter and down sample the resulting signal.

Summary Of Sampling $x_{s}(t) = x(t) x_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{s})$ $= \sum_{n=-\infty}^{\infty} x(nT_{s}) \delta(t - nT_{s})$

ldeal Sampling (or Impulse Sampling)

Natural Sampling (or Gating)

$$x_{s}(t) = x(t) x_{p}(t) = x(t) \sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n}$$

 $n = -\infty$

Flat-Top Sampling

For all sampling techniques
$$x'(t) = x'(t) * p(t) = \left| x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) \right| * p$$

- If fs > 2B then we can recover x(t) exactly
- If fs < 2B) spectral overlapping known as aliasing will occur