M.Sc. II Sem. (Mathematics)

Paper 1st - Advanced Abstract Algebra-II

Unit - IV

- Reference Book : P.B.Bhattacharya, S.K. Jain and S.R Nagpaul, *Basic Abstract Algebra* (2nd Edition), Cambridge University Press, Indian Edition, 1997.
 - C. Musili, *Introduction to Rings and Modules*, Second Revised Edition, Narosa Publishing House, New Delhi.

Topic : Uniform Modules, Primary Modules and

Noether-Lasker Theorem

Definition 1. A non-zero module M is called **uniform** if any two non-zero submodules of M have non-zero intersection.

Definition 2. Two uniform modules U and V are said to be **subisomorphic**, denoted by $\mathbf{U} \sim \mathbf{V}$ if U and V contain non-zero isomorphic submodules.

Here \sim is an equivalence relation and [U] denotes the equivalence class of U.

Definition 3. A module M is called **primary** if each non-zero submodule of M has uniform submodule and any two uniform submodules of M are subisomorphic.

Example. Z as a Z-module is uniform and primary. Indeed, any uniform module must be primary. Another example of a uniform module is a commutative integral domain regarded as a module over itself.

Theorem 1. Let M be a Noetherian module or a module over a Noetherian ring. Then each non-zero submodule of M contains a uniform module.

Proof. Let $0 \neq X \in M$. It is enough to show Rx contains a uniform submodule. If M is noetherian, the submodule Rx is also noetherian. But if R is noetherian, then Rx, the homomorphic image of R, is noetherian.

Now consider the family

 \Im = family of all submodules of Rx which intersect at least one submodule of Rx trivially.

As $(0) \in \mathfrak{T}$, $\mathfrak{T} \neq \phi$. Now Rx is Noetherian implies that \mathfrak{T} has a maximal element say,

K. By definition of \mathfrak{I} , there exists a submodule U of Rx such that $K \cap U = (0)$.

Now we claim that U is uniform.

Suppose if possible, there exist submodules A and B of U such that $A \cap B = (0)$.

Now $K \cap A \subseteq K \cap U = (0)$.

Consider $(K \oplus A) \cap B$.

Let x belong to this intersection.

Then x = y + a = b, where $y \in K$, $a \in A$ and $b \in B$.

This implies $y = b - a \in K \cap U = (0)$

$$\Rightarrow y = 0 \text{ and } b - a = 0$$
$$\Rightarrow x = a = b \in A \cap B = (0)$$

$$\Rightarrow$$
 x = 0.

Hence, $(K \oplus A) \cap B = (0)$. This implies $K \oplus A \in \mathfrak{I}$, a contradiction to the maximality of K.

Hence, U is uniform submodule of Rx.

Hence proved.

Unit – IV

Definition 4. Let R be a commutative Noetherian ring and P be a prime ideal of R. Then **P is said to be associated with an R-module M** if R/P embeds in M. Equivalently, $P = Ann_R(x)$ for some $x \in M$, where $Ann_R(x) = \{r \in R \mid rx = 0\}$ is the annihilator of x in R.

Definition 5. A module M is called **P-primary** for some prime ideal P if P is the only prime ideal associated with M.

Theorem 2. Let U be a uniform module over a commutative Noetherian ring R. Then U contains a submodule isomorphic to R/P for precisely one prime ideal P, that is, U is subisomorphic to R/P for exactly one prime ideal P of R.

Proof. Let $\Im = \{Ann_R(x) \mid 0 \neq x \in U\}$ be the family of annihilators of non-zero $x \in U$ in R. As R is Noetherian \Im has a maximal element, say, $Ann_R(x)$ for $0 \neq x \in U$. Now, we claim that $Ann_R(x) = P(say)$ is prime.

Clearly, P is an ideal of R.

Now let $ab \in P$. Then abx = 0.

Suppose $b \notin P$, that is, $bx \neq 0$.

Now $P = Ann_R(x) \subseteq Ann_R(bx)$ as R is commutative.

By maximality of P, we get $P = Ann_R(bx)$.

As $a \in Ann_R(bx)$, $a \in P$.

Thus P is prime.

Also $R/P \cong Rx \subseteq U$ and hence U is subisomorphic to R/P.

Now we prove the uniqueness.

Suppose Q is a prime ideal of R such that U is subisomorphic to R/Q.

Then [R/Q] = [U] = [R/P]

 \Rightarrow R/Q is subisomorphic to R/P.

Thus, there exist cyclic submodules Rx and Ry of R/P and R/Q such that $Rx \cong Ry$.

As $Rx \cong R/P$ and $Ry \cong R/Q$, we get

$$\mathbf{R}/\mathbf{P} \cong \mathbf{R}/\mathbf{Q} \implies \mathbf{P} = \mathbf{Q}.$$

Hence proved.

Theorem 3. Let M be a non-zero finitely generated module over a commutative Noetherian ring R. Then there are only finitely many prime associated with M.

Proof. Define \mathcal{P} to be the family of direct sums of cyclic uniform submodules of M.

By Theorem 1, $\mathcal{F} \neq \phi$.

Define partial order in \mathcal{F} by

$$\bigoplus_{i \in I} x_i R \leq \bigoplus_{j \in J} y_j R \quad \text{if and only if } I \subseteq J \text{ and } x_i R \subseteq y_i R \text{ for all } i \in I.$$

By Zorn's Lemma, \mathcal{F} has a maximal element, say, $N = \bigoplus_{\lambda \in J} x_{\lambda} R$.

As M is Noetherian, N is finitely generated and hence $N = \bigoplus_{i=1}^{m} x_i R$ for some positive

integer m.

As each x_iR is uniform, by Theorem 2, there exist $x_ia_i \in x_iR$ such that $P_i = Ann_R(x_ia_i)$ is the prime ideal associated with x_iR .

Let
$$K = \sum_{i=1}^{m} x_i a_i R$$
.

Now, we claim that if Q is any associated prime ideal of M, then $Q = P_i$ for some i,

$$1 \le i \le m$$
.

Now $Q = Ann_R(x)$ for some $x \in M$.

As N is a maximal member of F, both N and K intersect every non-zero submodule of M non-trivially.

Let $0 \neq y \in xR \cap K$. Then $y = xr = \sum_{i=1}^{m} x_i a_i r_i$.

Let $x_i a_i r_i s = 0 \implies r_i s \in Ann_R(x_i a_i) = P_i$.

Suppose $x_i a_i r_i \neq 0$.

Then $r_i \notin P_i$.

This gives $s \in P_i$.

Hence if $x_i a_i r_i \neq 0$, $Ann_R(x_i a_i) = Ann_R(x_i a_i r_i)$.

Now
$$\operatorname{Ann}_{R}(y) = \bigcap_{i=1}^{m} \operatorname{Ann}_{R}(x_{i}a_{i}r_{i})$$

 $= \bigcap_{i \in \Lambda} Ann_{R}(x_{i}a_{i})$ $= \bigcap_{i \in \Lambda} P_{i}, \text{ where } i \in \Lambda \text{ implies } x_{i}a_{i}r_{i} \neq 0.$

Now $R/Q \cong_{\theta} xR$. As $\theta^{-1}(yR)$ is cyclic submodule of R/Q, $\theta^{-1}(yR) \cong R/Q$.

Now
$$Q = Ann_R(x) = Ann_R(y) = \bigcap_{i \in \Lambda} P_i$$
.

Thus $Q \subseteq P_i \ \forall \ i \in \Lambda$.

Now suppose $P_i \nsubseteq Q \ \forall \ i \in \Lambda$. Then there exist $x_i \in P_i$ such that

$$x_i \notin Q \ \forall \ i \in \Lambda$$
.

As $\prod_{i \in \Lambda} x_i \in \bigcap_{i \in \Lambda} P_i = Q$ and Q is prime, this leads to a contradiction.

Hence $P_i \subseteq Q$ for some $i \in \Lambda$.

Thus, $Q = P_i$ for some i = 1, 2, ..., m.

Hence proved.

Noether-Lasker Theorem :

Let M be a finitely generated module over a commutative Noetherian ring R. Then there exists a finite family $N_1, N_2, ..., N_m$ of submodules of M such that

(a) $\bigcap_{i=1}^{m} N_i = 0$ and $\bigcap_{i \neq j} N_i \neq 0 \quad \forall \ 1 \le j \le m.$

- (b) Each quotient M/N_i is P_i -primary module for some prime ideal P_i .
- (c) The P_i 's are all distinct.
- (d) The primary components N_i is unique if and only if P_i does not contain P_j for $j \neq i$.