M.Sc. II Sem. (Mathematics)

Paper $1^{\text {st }}$ - Advanced Abstract Algebra-II

Unit - IV

Reference Book: - P.B.Bhattacharya, S.K. Jain and S.R Nagpaul, Basic Abstract Algebra ($2^{\text {nd }}$ Edition), Cambridge University Press, Indian Edition, 1997.

- C. Musili, Introduction to Rings and Modules, Second Revised Edition, Narosa Publishing House, New Delhi.

Topic : Uniform Modules, Primary Modules and

Noether-Lasker Theorem

Definition 1. A non-zero module M is called uniform if any two non-zero submodules of M have non-zero intersection.

Definition 2. Two uniform modules U and V are said to be subisomorphic, denoted by $\mathbf{U} \sim \mathbf{V}$ if U and V contain non-zero isomorphic submodules.

Here \sim is an equivalence relation and [U] denotes the equivalence class of U.

Definition 3. A module M is called primary if each non-zero submodule of M has uniform submodule and any two uniform submodules of M are subisomorphic.

Example. Z as a Z-module is uniform and primary. Indeed, any uniform module must be primary. Another example of a uniform module is a commutative integral domain regarded as a module over itself.

Theorem 1. Let M be a Noetherian module or a module over a Noetherian ring. Then each non-zero submodule of M contains a uniform module.

Proof. Let $0 \neq X \in M$. It is enough to show $R x$ contains a uniform submodule. If M is noetherian, the submodule Rx is also noetherian. But if R is noetherian, then Rx , the homomorphic image of R, is noetherian.

Now consider the family
$\mathfrak{I}=$ family of all submodules of Rx which intersect at least one submodule of Rx trivially.

As $(0) \in \mathfrak{I}, \mathfrak{I} \neq \phi$. Now $R x$ is Noetherian implies that \mathfrak{I} has a maximal element say, K. By definition of \mathfrak{I}, there exists a submodule U of Rx such that $\mathrm{K} \cap \mathrm{U}=(0)$.

Now we claim that U is uniform.

Suppose if possible, there exist submodules A and B of U such that $A \cap B=(0)$.
Now $K \cap A \subseteq K \cap U=(0)$.

Consider $(\mathrm{K} \oplus \mathrm{A}) \cap \mathrm{B}$.

Let x belong to this intersection.
Then $\mathrm{x}=\mathrm{y}+\mathrm{a}=\mathrm{b}$, where $\mathrm{y} \in \mathrm{K}, \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}$.
This implies $\mathrm{y}=\mathrm{b}-\mathrm{a} \in \mathrm{K} \cap \mathrm{U}=(0)$

$$
\begin{aligned}
& \Rightarrow \quad y=0 \text { and } b-a=0 \\
& \Rightarrow \quad x=a=b \in A \cap B=(0) \\
& \Rightarrow \quad x=0 .
\end{aligned}
$$

Hence, $(\mathrm{K} \oplus A) \cap \mathrm{B}=(0)$. This implies $\mathrm{K} \oplus \mathrm{A} \in \mathfrak{I}$, a contradiction to the maximality of K .

Hence, U is uniform submodule of Rx .

Hence proved.

Definition 4. Let R be a commutative Noetherian ring and P be a prime ideal of R . Then \mathbf{P} is said to be associated with an R-module \mathbf{M} if R / P embeds in M. Equivalently, $P=\operatorname{Ann}_{R}(x)$ for some $x \in M$, where $\operatorname{Ann}_{R}(x)=\{r \in R \mid r x=0\}$ is the annihilator of x in R.

Definition 5. A module M is called P -primary for some prime ideal P if P is the only prime ideal associated with M.

Theorem 2. Let U be a uniform module over a commutative Noetherian ring R. Then U contains a submodule isomorphic to R / P for precisely one prime ideal P , that is, U is subisomorphic to R / P for exactly one prime ideal P of R .

Proof. Let $\mathfrak{I}=\left\{\operatorname{Ann}_{\mathrm{R}}(\mathrm{x}) \mid 0 \neq \mathrm{x} \in \mathrm{U}\right\}$ be the family of annihilators of non-zero $x \in U$ in R. As R is Noetherian \mathfrak{I} has a maximal element, say, $\operatorname{Ann}_{R}(x)$ for $0 \neq x \in U$. Now, we claim that $\operatorname{Ann}_{R}(x)=P($ say $)$ is prime.

Clearly, P is an ideal of R .

Now let $\mathrm{ab} \in \mathrm{P} . \quad$ Then $\mathrm{abx}=0$.

Suppose $\mathrm{b} \notin \mathrm{P}$, that is, $\mathrm{bx} \neq 0$.
Now $\mathrm{P}=\mathrm{Ann}_{\mathrm{R}}(\mathrm{x}) \subseteq \mathrm{Ann}_{\mathrm{R}}(\mathrm{bx})$ as R is commutative.

By maximality of P , we get $\mathrm{P}=\mathrm{Ann}_{\mathrm{R}}(\mathrm{bx})$.

As $a \in A n n_{R}(b x), a \in P$.

Thus P is prime.
Also $R / P \cong R x \subseteq U$ and hence U is subisomorphic to R / P.

Now we prove the uniqueness.

Suppose Q is a prime ideal of R such that U is subisomorphic to R / Q.
Then $[\mathrm{R} / \mathrm{Q}]=[\mathrm{U}]=[\mathrm{R} / \mathrm{P}]$
$\Rightarrow R / Q$ is subisomorphic to R / P.

Thus, there exist cyclic submodules $R x$ and $R y$ of R / P and R / Q such that $R x \cong R y$.

As $R x \cong R / P$ and $R y \cong R / Q$, we get

$$
R / P \cong R / Q \Rightarrow P=Q
$$

Hence proved.

Theorem 3. Let M be a non-zero finitely generated module over a commutative Noetherian ring R. Then there are only finitely many prime associated with M.

Proof. Define \mathcal{F} to be the family of direct sums of cyclic uniform submodules of M. By Theorem 1, $\mathcal{F} \neq \phi$.

Define partial order in \mathcal{F} by

$$
\oplus \sum_{\mathrm{i} \in \mathrm{I}} \mathrm{x}_{\mathrm{i}} \mathrm{R} \leq \oplus \sum_{\mathrm{j} \in \mathrm{~J}} \mathrm{y}_{\mathrm{j}} \mathrm{R} \quad \text { if and only if } \mathrm{I} \subseteq \mathrm{~J} \text { and } \mathrm{x}_{\mathrm{i}} \mathrm{R} \subseteq \mathrm{y}_{\mathrm{i}} \mathrm{R} \text { for all } \mathrm{i} \in \mathrm{I} .
$$

By Zorn's Lemma, \mathcal{F} has a maximal element, say, $\mathrm{N}=\oplus \sum_{\lambda \in \mathrm{J}} \mathrm{x}_{\lambda} \mathrm{R}$.

As M is Noetherian, N is finitely generated and hence $N=\oplus \sum_{i=1}^{m} x_{i} R$ for some positive integer m .

As each $x_{i} R$ is uniform, by Theorem 2, there exist $x_{i} a_{i} \in x_{i} R$ such that $P_{i}=\operatorname{Ann}_{R}\left(x_{i} a_{i}\right)$ is the prime ideal associated with $\mathrm{x}_{\mathrm{i}} \mathrm{R}$.

Let $K=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{R}$.

Now, we claim that if Q is any associated prime ideal of M, then $Q=P_{i}$ for some i, $1 \leq \mathrm{i} \leq \mathrm{m}$.

Now $\mathrm{Q}=\mathrm{Ann}_{\mathrm{R}}(\mathrm{x})$ for some $\mathrm{x} \in \mathrm{M}$.
As N is a maximal member of \mathscr{F}, both N and K intersect every non-zero submodule of M non-trivially.

Let $0 \neq y \in x R \cap K$. Then $y=x r=\sum_{i=1}^{m} x_{i} a_{i} r_{i}$.

Let $\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \mathrm{s}=0 \Rightarrow \mathrm{r}_{\mathrm{i}} \mathrm{S} \in \operatorname{Ann}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}\right)=\mathrm{P}_{\mathrm{i}}$.

Suppose $\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \neq 0$.
Then $\mathrm{r}_{\mathrm{i}} \notin \mathrm{P}_{\mathrm{i}}$.
This gives $s \in P_{i}$.
Hence if $x_{i} a_{i} r_{i} \neq 0, \quad \operatorname{Ann}_{R}\left(x_{i} a_{i}\right)=A n n_{R}\left(x_{i} a_{i} r_{i}\right)$.

Now $\quad \operatorname{Ann}_{R}(y)=\bigcap_{i=1}^{m} \operatorname{Ann}_{R}\left(x_{i} a_{i} r_{i}\right)$

$$
=\bigcap_{\mathrm{i} \in \Lambda} A \mathrm{Ann}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}\right)
$$

$=\bigcap_{\mathrm{i} \in \Lambda} \mathrm{P}_{\mathrm{i}}$, where $\mathrm{i} \in \Lambda$ implies $\mathrm{x}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \neq 0$.

Now $R / Q \cong \cong_{\theta} x R$. As $\theta^{-1}(y R)$ is cyclic submodule of $R / Q, \quad \theta^{-1}(y R) \cong R / Q$.

Now $Q=\operatorname{Ann}_{R}(x)=\operatorname{Ann}_{R}(y)=\bigcap_{i \in \Lambda} P_{i}$.

Thus $\mathrm{Q} \subseteq \mathrm{P}_{\mathrm{i}} \forall \mathrm{i} \in \Lambda$.

Now suppose $\mathrm{P}_{\mathrm{i}} \nsubseteq \mathrm{Q} \forall \mathrm{i} \in \Lambda$. Then there exist $\mathrm{x}_{\mathrm{i}} \in \mathrm{P}_{\mathrm{i}}$ such that

$$
\mathrm{x}_{\mathrm{i}} \notin \mathrm{Q} \forall \mathrm{i} \in \Lambda .
$$

As $\prod_{i \in \Lambda} x_{i} \in \bigcap_{i \in \Lambda} P_{i}=Q$ and Q is prime, this leads to a contradiction.

Hence $P_{i} \subseteq Q$ for some $i \in \Lambda$.
Thus, $Q=P_{i}$ for some $i=1,2, \ldots, m$.
Hence proved.

Noether-Lasker Theorem :

Let M be a finitely generated module over a commutative Noetherian ring R. Then there exists a finite family $N_{1}, N_{2}, \ldots, N_{m}$ of submodules of M such that
(a) $\bigcap_{i=1}^{m} \mathrm{~N}_{\mathrm{i}}=0$ and $\bigcap_{\mathrm{i} \neq \mathrm{j}} \mathrm{N}_{\mathrm{i}} \neq 0 \quad \forall 1 \leq \mathrm{j} \leq \mathrm{m}$.
(b) Each quotient M / N_{i} is $P_{i}-$ primary module for some prime ideal P_{i}.
(c) The P_{i} 's are all distinct.
(d) The primary components N_{i} is unique if and only if P_{i} does not contain P_{j} for $j \neq i$.

