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M.Sc. II Sem. (Mathematics) 

Paper 1st -  Advanced Abstract Algebra-II 

Unit - III 

Reference Book :  •  P.B.Bhattacharya, S.K. Jain and S.R Nagpaul, Basic Abstract  

Algebra (2nd Edition), Cambridge University Press, Indian Edition, 

1997. 

                              •  C. Musili, Introduction to Rings and Modules, Second Revised 

Edition, Narosa Publishing House, New Delhi. 

Topic :  Noetherian and Artinian Modules 

Thoerem : Every homomorphic image of a noetherian module is also a noetherian 

module. 

Proof. Suppose M1 be a noetherian module.   

Suppose f : M1 M2 be a surjective homomorphism, where M1 and M2 are modules. 

Then we have to show that M2 is a noetherian module.  

Suppose B be the submodule of M2. 

Then  1f (B)  is the submodule of M1. 

Since M1 is noetherian and so 1f (B)  is finitely generated. 

Since the image of a finitely generated submodule is finitely generated and so  

 1f f (B) B  , which is finitely generated.                   ( B is surjective) 



 

Noetherian and Artinian Modules      Page 2 of 6         - Dr. Arihant Jain (98266-55655) 
 

Since B is arbitrary, and so every submodule of M2 is finitely generated and so M2 is 

noetherian.       ( If every submodule of M is finitely  

              generated, then M is noetherian) 

Hence, every homomorphic image of a noetherian module is also a noetherian 

module. 

Hence proved. 

Corollary : Suppose M be a noetherian module and L be a submodule of M. Then 

M/L is also noetherian. 

Proof. Since quotient module M/L is homomorphic image of M, hence by theorem 

“Every homomorphic image of a noetherian module is also a noetherian module”, we 

conclude that M/L is also noetherian. 

Hence proved. 

Theorem :  Suppose M be an R-module and N be a submodule of M such that N and 

M/N are noetherian then M is also noetherian. 

Proof.   To show that M is noetherian, consider an ascending chain of submodules of 

M :  

 M1  M2   M3   … Mn  Mn+1 …  . 

Intersecting with N gives an ascending chain  

N M1  N M2   N M3   …  N Mn  N Mn+1 …  . 

Since  N is noetherian module, then there exists a number r such that  

N Mr = N   Mr+1. 

Also,   M/N is noetherian module and so there exists an ascending chain 
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 1 2 rN M N M N M... ...
N N N
  

     

such that for some s 

s s 1N M N M .
N N

 
  

From above result, we have 

(i) Mn Mn+1 

(ii) N Mn  N Mn+1 for n r 

(iii) n n 1N M N M
N N

 
   for some n s. 

From second isomorphism theorem for modules, we have 

n n

n

N M M
N N M



 n N. 

Hence, we get 

 n n n 1 n 1

n n 1

M N M N M M
N M N N N M

 



 
  

 
    for n  r + s. 

Hence for n  r + s, we get 

Mn = Mn+1.        

Hence, M satisfy ascending chain condition and so M is noetherian. 

Hence proved. 
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Some Pathologies: 

1.  An Artinian module need not be finitely generated. 

2.  Maximal submodules need not exist in an Artinian module. 

3.  An Artinian module need not be Noetherian. 

4.  A finitely generated module need not be Noetherian. 

5.  Minimal submodules need not exist in a Noetherian module. 

6.  A Noetherian module need not be Artinian. 

7.  There are modules which are neither Artinian nor Noetherian. 

Definition : A ring R is called a left noetherian ring if R regarded as a left R-module 

is noetherian. Similarly, a ring R is called a right noetherian ring if R regarded as a 

right R-module is noetherian.  

Definition : A ring R is called a left artinian ring if R regarded as a left R-module is 

artinian. Similarly, a ring R is called a right artinian ring if R regarded as a right R-

module is artinian.  

Examples : 

(a) Let V be an n-dimensional vector space over a field F. Then V is both 

noetherian and artinian. 

(b) Let A be a finite-dimensional algebra with unity over a field F. Then A as a 

ring is both left and right noetherian as well as artinian. 

(c) Let R = F[x] be a polynomial ring over a field F in x. Then F[x] is a 

noetherian ring. 

(d) Finite abelian groups are Noetherian as modules over Z. 

(e) Finite dimensional vector spaces are Noetherian (for dimension reasons) 

whereas infinite dimensional ones are not Noetherian. 
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(f) Unlike the Artinian case, infinite cyclic groups are Noetherian. 

Theorem. A subring of a noetherian (artinian) ring need not be noetherian 

(artinian). 

Proof.  For the artinian case the ring of rational numbers Q is an artinian ring, but 

its subring Z is not an artinian ring. 

For the noetherian case, the ring of 2 × 2 matrices over the rational numbers Q 

is a noetherian ring, but its subring 
Z Q a b

a Z, b,c Q
0 Q 0 c

           
     

 is not 

noetherian, that is, not left noetherian. 

Hilbert Basis Theorem :  

Let R be a noetherian ring. Then the polynomial ring R[x] is also a noetherian ring. 

Proof.  Suppose there exists an ideal I  R[x], which is not finitely generated. 

Set I0 = (0), then let f1  I be a polynomial in I of least degree. 

Let I1 be the ideal generated by f1, i.e. 

I1 = (f1).   

Let f2 be an element of least degree in I \ (f1). 

Let f2 be an element of least degree in I \ (f1, f2) 

and       I2 = (f1, f2). 

Recursively, let fi be a polynomial of least degree in I \ (f1, …, fi-1). 

Then we observe that 

(1)     deg f1   deg f2  deg f3  … 
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(2)      I1 I2  I3 ...  . 

Let ai be the leading coefficient of fi. 

Let Ji = (a1, …, ai) 

 J1   J2   J3   … 

Since this is a chain of ideals in R, which is noetherian, and so there exists n such 

that  

Jn = Jn+1 = … 

  an+1 = 
n

i i
i 1

ra

  for some ri A. 

Let    f = fn+1 – 
n

i i
i 1

r f

 . 

    deg f  <  deg fn+1    and   f  In+1 

   f  In.    [Since fn+1 is a polynomial of least degree in I \ (f1, …, fn)] 

Therefore, fn+1  In, which is a contradiction. 

 I is finitely generated. 

Thus, R[x] is noetherian. 

Hence proved. 

 


