Probability Distribution

Random variable:

A variable whose value is determined by the outcome of a random experiment is called a random variable. Random variable is usually denoted by X .

A random variable may be discrete or continuous.
A discrete random variable is defined over a discrete sample space, i.e. the sample space whose elements are finite.
Ex: 1) Number of heads falling in a coin tossing
2) Number of points obtained when a die is thrown etc.

Discrete random variable takes values such as $0,1,2,3,4, \ldots \ldots$.
For example in a game of rolling of two dice there are certain outcomes.
Let X be a random variable defined as 'total points on two dice", then X takes values $2,3,4,5,6,7,8,9,10,11,12$. Here X is a discrete variable.

A random variable which is defined over a continuous samplespace, i.e. the sample space whose elements are infinite is called a continuous random variable.
Ex: 1) All possible heights, weights, temperature, pressure etc.
Continuous random variable assumes the values in some interval (a, b) where a and b may be ∞ and $-\infty$

Probability distribution:

The values taken by a discrete random variable such as X, and its associated probabilities $\mathrm{P}(\mathrm{X}=\mathrm{x})$ or simply $\mathrm{P}(\mathrm{x})$ define a discrete probability distribution and $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is called "Probability mass function".

The probability mass function (pmf) or probability function has the following properties.

1) $P(x) \geq 0, \forall x$
2) $\sum_{x} P(X=x)=1$

Ex: Suppose take a random experiment tossing of a coin two times. Then the sample space is S $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

Let X is a random variable denotes the 'number of heads' in the possible outcomes then X takes values $0,1,2$ i. i.e. $\mathrm{X}=0, \mathrm{X}=1$ and $\mathrm{X}=2$.
And their corresponding probabilities are

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=1 / 4 \\
& \mathrm{P}(\mathrm{X}=1)=1 / 2 \\
& \mathrm{P}(\mathrm{X}=2)=1 / 4
\end{aligned}
$$

So denoting possible values of X and by x and their probabilities by $\mathrm{P}(\mathrm{X}=\mathrm{x})$, we have the following probability distribution.

X	0	1	2
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$1 / 4$	$2 / 4$	$1 / 4$

And $P(X=0)+P(X=1)+P(X=2)=1$.

The values taken by a continuous random variable X , and its associated probabilities $\mathrm{P}(\mathrm{X}=\mathrm{x})$ or simply $\mathrm{P}(\mathrm{x})$ define a continuous probability distribution and $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is called "Probability density function" and it has following properties

1) $P(x) \geq 0, \forall-\infty<x<\infty$
2) $\int_{-\infty}^{\infty} P(X=x) d x=1$

Mathematical Expectation:

If X denotes a discrete random variable which can assume the values $x_{1}, x_{2}, x_{3}, \ldots . . x_{k}$ with respective probabilities $p_{1}, p_{2}, p_{3, \ldots \ldots \ldots .,} p_{k} \quad$ where $\sum_{i=1}^{k} p_{i}=1$.The
Mathematical Expectation of X denoted by $\mathrm{E}(\mathrm{X})$ is defined as

$$
\mathrm{E}(\mathrm{X})=\sum_{i=1}^{k} p_{i} x_{i}
$$

Ex: 1) A coin is tossed two times. Find the mathematical expectation of getting heads?
Sol: Define X as number of heads in tossing of two coins.
So X takes values $0,1,2$.
And

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=1 / 4 \\
& \mathrm{P}(\mathrm{X}=1)=2 / 4 \\
& \mathrm{P}(\mathrm{X}=2)=1 / 4
\end{aligned}
$$

Now $\mathrm{E}(\mathrm{X})=\sum_{i=1}^{k} p_{i} x_{i}$

$$
=0 \times \frac{1}{4}+1 \times \frac{2}{4}+2 \times \frac{1}{4}
$$

$\Rightarrow \mathrm{E}(\mathrm{X})=1$.
Ex: 2) A die is thrown once. Find the mathematical expectation of the point on the upper face of the die.
Sol: Define a random variable X as the point on the upper face of the die.
So X takes values $1,2,3,4,5,6$.
The probability distribution is

X	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Now
$\mathrm{E}(\mathrm{X})=\sum_{i=1}^{k} p_{i} x_{i}$
$=1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6}$
$=\frac{21}{6}=3.5$

Def: The mathematical expectation of $g(x)$ is defined as

$$
\mathrm{E}[\mathrm{~g}(\mathrm{x})]=\sum_{i=1}^{k} g\left(x_{i}\right) p\left(x_{i}\right) \text { provided } \sum_{i=1}^{k}\left|g\left(x_{i}\right)\right| p\left(x_{i}\right) \text { is finite }
$$

Putting $g(x)=x^{2}, x^{3}, 2 x+4$
We get $\mathrm{E}\left[x^{2}\right]=\sum_{i=1}^{k} x_{i}^{2} p\left(x_{i}\right)$

$$
\begin{aligned}
& \mathrm{E}\left[x^{3}\right]=\sum_{i=1}^{k} x_{i}^{3} p\left(x_{i}\right) \\
& \mathrm{E}[2 x+3]=\sum_{i=1}^{k}\left(2 x_{i}+3\right) p\left(x_{i}\right)
\end{aligned}
$$

Theorem:1) If a and b are constants then $\mathrm{E}[a x+b]=a \mathrm{E}(x)+\mathrm{b}$
Proof: $\mathrm{E}[a x+b]=\sum_{i=1}^{k}\left(a x_{i}+b\right) p\left(x_{i}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{k} a x_{i} p\left(x_{i}\right)+\sum_{i=1}^{k} b p\left(x_{i}\right) \\
& =a \mathrm{E}(x)+\mathrm{b}
\end{aligned}
$$

Theorem:2) If $g(x)$ and $h(x)$ are any two functions of a discrete random variable X, then

$$
\mathrm{E}[\mathrm{~g}(\mathrm{x}) \pm \mathrm{h}(\mathrm{x})]=\mathrm{E}[\mathrm{~g}(\mathrm{x})] \pm \mathrm{E}[\mathrm{~h}(\mathrm{x})]
$$

Proof:

$$
\begin{aligned}
\mathrm{E}[\mathrm{~g}(\mathrm{x}) \pm \mathrm{h}(\mathrm{x})] & =\sum_{i=1}^{k}\left[g\left(x_{i}\right) \pm h\left(x_{i}\right)\right] p\left(x_{i}\right) \\
& =\sum_{i=1}^{k} g\left(x_{i}\right) p\left(x_{i}\right) \pm \sum_{i=1}^{k} h\left(x_{i}\right) p\left(x_{i}\right) \\
& =\mathrm{E}[\mathrm{~g}(\mathrm{x})] \pm \mathrm{E}[\mathrm{~h}(\mathrm{x})]
\end{aligned}
$$

Def: The 'Variance' of a random variable ' X ' is given by

$$
\mu_{2}=E[X-E(X)]^{2}
$$

Theorem:3) $E[X-E(X)]^{2}=\mathrm{E}\left[X^{2}\right]-[\mathrm{E}(\mathrm{X})]^{2}$
Proof:

$$
\begin{aligned}
E[X-E(X)]^{2} & =\sum_{i=1}^{k}\left[x_{i} \pm E(X)\right]^{2} p\left(x_{i}\right) \\
& =\sum_{i=1}^{k} x_{i}^{2} p\left(x_{i}\right)+\sum_{i=1}^{k}[E(X)]^{2} p\left(x_{i}\right)-\sum_{i=1}^{k} 2 x_{i} E(X) p\left(x_{i}\right) \\
& =\mathrm{E}\left[X^{2}\right]+[E(X)]^{2} \sum_{i=1}^{k} p\left(x_{i}\right)-2 \mathrm{E}[X] \sum_{i=1}^{k} x_{i} p\left(x_{i}\right) \\
& =\mathrm{E}\left[X^{2}\right]+[E(X)]^{2}-2 \mathrm{E}[X] \mathrm{E}[X] \quad\left[\because \sum_{i=1}^{k} p\left(x_{i}\right)=1\right] \\
& =\mathrm{E}\left[X^{2}\right]-[\mathrm{E}(\mathrm{X})]^{2}
\end{aligned}
$$

Theorem:4) If X is a random variable and a and b are constants then $\mathrm{V}[a X+b]=a^{2} \mathrm{~V}(\mathrm{X})$.

Proof:

$$
\begin{aligned}
\mathrm{V}[a X+b] & =E[(a X+b)-E(a X+b)]^{2} \\
& =E[(a X+b)-a E(X)-E(b)]^{2} \\
& =E\left[(a X-a E(X)]^{2}\right. \\
& =E[a(X-E(X))]^{2} \\
& =a^{2} E\left[(X-E(X)]^{2}\right. \\
& =a^{2} \mathrm{~V}(\mathrm{X}) .
\end{aligned}
$$

Joint probability distribution:

If X and Y are two discrete random variables, the probability for the simultaneous occurrence of X and Y can be represented by $P(X=x, Y=y)$ or $P(x, y)$, then a joint probability distribution is defined by all the possible values of X and Y associated with the joint probability density function $P(x, y)$. (X,Y) is said to be a two dimensional random variable.

In discrete case $P(x, y)$ have the following properties
i) $P(x, y) \geq 0 \quad \forall$ and y
ii) $\sum_{x} \sum_{y} P(x, y)=1$

Ex: If a coin is tossed two times
Define X as the result on the first coin i.e. H, T
Y as the result on the first coin i.e. H , T
Now the joint probability distribution of X and Y can be constructed as below

Y^{X}	H	T
H	$1 / 4$	$1 / 4$
T	$1 / 4$	$1 / 4$

Marginal density function:

Given that the joint probability function $P(x, y)$ of the discrete random variables X and Y , the marginal density function of x is defined as $P(x)=\sum_{y} P(x, y) \forall x$ the marginal density function of y is defined as $Q(y)=\sum_{x} P(x, y) \forall y$

Conditional probability function:

Given that the joint probability function $P(x, y)$ of the discrete random variables X and Y , the Conditional probability function of x given y is defined as $P(x / y)=\frac{P(x, y)}{Q(y)}, Q(y)>0$ the Conditional probability function of y given x is defined as $P(y / x)=\frac{P(x, y)}{P(x)}, P(x)>0$

Where $Q(y)$ and $P(x)$ are the marginal density functions of y and x respectively.

Independent random variables:

Two discrete random variables X and Y are said to be independent if

$$
P(x, y)=P(x) P(y) \forall x \text { and } y
$$

Note: In case of independent random variables

$$
\begin{array}{r}
\quad P(x / y)=P(x) \forall x \text { and } y \\
\text { and } P(y / x)=P(y) \forall x \text { and } y
\end{array}
$$

Theorem: If X and Y are two discrete random variables with joint probability function $P(x, y)$ then $E[g(X) \pm h(Y)]=E[g(X)] \pm E[h(Y)]$.
Proof:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{~g}(\mathrm{x}) \pm \mathrm{h}(\mathrm{y})]=\sum_{i} \sum_{j}\left[g\left(x_{i}\right) \pm h\left(y_{i}\right)\right] P\left(x_{i}, y_{j}\right) \\
&= \sum_{i} \sum_{j} g\left(x_{i}\right) P\left(x_{i}, y_{j}\right) \pm \sum_{i} \sum_{j} h\left(y_{i}\right) P\left(x_{i}, y_{j}\right) \\
&= \sum_{i} g\left(x_{i}\right) P\left(x_{i}\right) \pm \sum_{j} h\left(y_{j}\right) P\left(y_{j}\right)\left[\because P\left(x_{i}\right)=\sum_{j} P\left(x_{i}, y_{j}\right)\right. \\
&\left.P\left(y_{j}\right)=\sum_{i} P\left(x_{i}, y_{j}\right)\right]
\end{aligned}
$$

$$
=\mathrm{E}[\mathrm{~g}(\mathrm{X})] \pm \mathrm{E}[\mathrm{~h}(\mathrm{Y})]
$$

Similarly putting $g(X)=X$ and $h(Y)=Y$ in the above theorem we get

$$
\mathrm{E}[\mathrm{X} \pm \mathrm{Y}]=\mathrm{E}[\mathrm{X}] \pm \mathrm{E}[\mathrm{Y}] .
$$

Theorem: If X and Y are two independent discrete random variables with joint probability function $P(x, y)$ then $E(X Y)=E(X) E(Y)$
Proof:

$$
\begin{aligned}
E(X Y) & =\sum_{i} \sum_{j} x_{i} y_{j} P\left(x_{i}, y_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} y_{j} P\left(x_{i}\right) P\left(y_{i}\right) \quad[\because \mathrm{X} \text { and } \mathrm{Y} \text { are independent }] \\
& =\sum_{i} x_{i} P\left(x_{i}\right) \sum_{j} y_{j} P\left(y_{j}\right) \\
& =E(X) E(Y)
\end{aligned}
$$

Covariance of X and Y :

Covariance of X and Y is written symbolically as $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$ or $\sigma_{X Y}$ and is defined as

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=E[X-E(X)][Y-E(Y)]
$$

And

$$
\begin{aligned}
\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) & =E[X-E(X)][Y-E(Y)] \\
& =E[X Y-Y E(X)-X E(Y)+E(X) E(Y)] \\
& =E[X Y]-E(Y) E(X)-E(X) E(Y)+E(X) E(Y) \\
& =E[X Y]-E(X) E(Y)
\end{aligned}
$$

Theorem: If X and Y are independent then $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$ Proof:

If X and Y are independent then we have

$$
\begin{aligned}
& E(X Y)=E(X) E(Y) \\
= & E(X Y)-E(X) E(Y)=0 \\
= & \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0
\end{aligned}
$$

Theorem: If X and Y are two discrete random variables, then

$$
V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Proof:

$$
\begin{aligned}
V(a X+b Y) & =E[(a X+b Y)-E(a X+b Y)]^{2} \\
& =E[(a X+b Y)-a E(X)-b E(Y)]^{2} \\
& =E[a\{X-E(X)\}+b\{Y-E(Y)\}]^{2} \\
& =E\left[a^{2}\{X-E(X)\}^{2}+b^{2}\{Y-E(Y)\}^{2}+2 a b\{X-E(X)\}\{Y-E(Y)\}\right] \\
& =a^{2} E[X-E(X)]^{2}+b^{2} E[Y-E(Y)]^{2}+2 a b E[X-E(X)][Y-E(Y)] \\
& =a^{2} V(X)+b^{2} V(Y)+2 a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

Note: If X and Y are independent then $V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)[\because \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0]$
Correlation coefficient:
If $E\left(X^{2}\right)$ and $E\left(Y^{2}\right)$ exist, the correlation coefficient (is measure of relationship) between X and Y is defined as

$$
\begin{aligned}
\rho & =\frac{\operatorname{Cov}(X, Y)}{S . D(X) S . D(Y)} \\
& =\frac{E[X-E(X)][Y-E(Y)]}{\sqrt{E[X-E(X)]^{2}} \sqrt{E[Y-E(Y)]^{2}}}
\end{aligned}
$$

The sign of ρ is determined by the sign of $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
Note: If two variables X and Y are independent then $\rho=0$ and X and Y are said to be uncorrelated.

EXCERSICE

1) Let X be a random variable having the following probability distribution.

X	1	2	3	4	5
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$1 / 6$	$1 / 3$	0	$1 / 3$	$1 / 6$

Find the expected values and the variance of i) $X \quad$ ii) $2 X+1 \quad$ iii) $2 X-3$
2) X is a randomly drawn number from the set $\{1,2,3,4,5,6,7,8,9,10\}$. Find $E(2 X-3)$.
3) X and Y are independent random variables with $V(X)=V(Y)=4$. Find $V(3 X-2 Y)$.
4) A bowl contains 6 chits, with numbers 1,2 and 3 written on two, three and one chits respectively. If X is the observed number on a randomly drawn chit, find $E\left(X^{2}\right)$.
5) Define independence of two random variables. For independent random variables X and Y , assuming the addition and multiplication law of expectation, prove that $V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)$
6) Let us consider the experiment of tossing an honest coin twice. The random variable X takes values 0 or 1 according as head or tail appears at the result of the first toss. The random variable Y takes values either 0 or 1 according as whether head or tail appears as a result of second toss. Show that X and Y are independent.
7) Ram and Shyam alternately toss a die, Ram starting the process. He who throws 5 or 6 first gets a prize of Rs. 10 and the game ends with the award of the prize. Find the expectation of the Ram's gain.
8) Clearly explain the conditions under which, $E(X Y)=E(X) E(Y)$ also prove the relation.
9) In a particular game a gambler can win a sum of Rs. 100 with probability $2 / 5$ and lose a sum of Rs. 50 with probability $3 / 5$. What is the mathematical expectation of his gain.
10) A business concern consists of 5 senior level and 3 junior level executives. A committee is to be formed by taking 3 executives at random. Find the expected number of senior executives to be in the committee.
11) There are two boxes: a white colored box and a red colored box. Each box contains 3 balls marked 1, 2, and 3. One ball is drawn from each box and their numbers are marked. Let X denotes the number observed from white box and Y denotes the number observed from the red box. Show that i) $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$
ii) $E(X Y)=E(X) E(Y)$
iii) $V(X+Y)=V(X)+V(Y)$
12) Calculate the mean and the standard deviation of the distribution of random digits, that is, $f(X)=1 / 10, X=0,1,2, \ldots \ldots, 9$
13) A person picks up 4 cards at random from a full deck. If he receives twice as many rupees as the number of aces he gets, find the expected gain.

