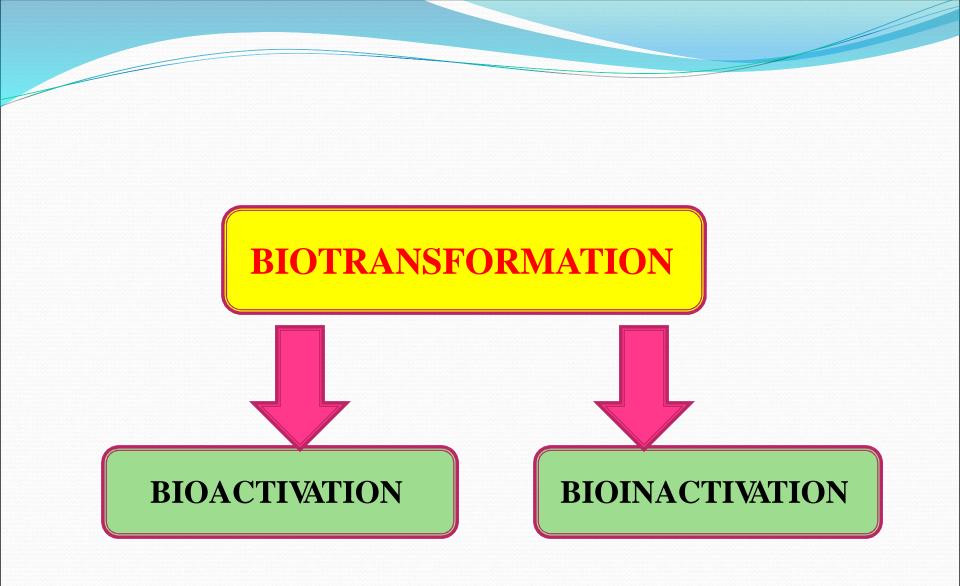

Biopharmaceutics & Pharmacokinetics 8th SEM


Biotransformation of drug – Phase I reactions

Dr. Praveen Khirwadkar Institute of Pharmacy Vikarm University Ujjain

INTRODUCTION

Biotransformation is a chemical alteration of the drug in body that converts non-polar or lipid soluble compounds to polar or lipid insoluble compounds so that they are not reabsorbed but eliminated

SIGNIFICANCE OF BIOTRANSFORMATION

- conversion of an active drug to inactive or less active metabolites called as pharmacological inactivation.
- conversion of an active to more active metabolite called as bioactivation or toxicological activation.
- conversion of an inactive to more active toxic metabolite called as lethal synthesis
- conversion of an inactive drug (pro-drug) to active metabolite called as pharmacological activation
- conversion of an active drug to equally active metabolite (no change in pharmacological activity)
- conversion of an active drug to active metabolite having entirely different pharmacological activity (change in pharmacological activity)

SITE OF BIOTRANSFORMATION

 The major site of drug metabolism is the liver (microsomal enzyme systems of hepatocytes)

- Secondary organs of biotransformation kidney (proximal tubule)
- lungs (type II cells)
- testes (Sertoli cells) skin (epithelial cells)

plasma.

nervous tissue (brain); intestines

- Metabolism by organs other than liver (called as extrahepatic metabolism) is of lesser importance because lower level of metabolising enzymes is present in such tissues.
- Within a given cell, most drug metabolising activity is found in the smooth endoplasmic reticulum and the cytosol
- Drug metabolism can also occur in mitochondria, nuclear envelope and plasma membrane.
- A few drugs are also metabolised by non-enzymatic means called as nonenzymatic metabolism.
- Eg; atracurium, a neuromuscular blocking drug, is inactivated in plasma by spontaneous non-enzymatic degradation (Hoffman elimination) in addition to that by pseudocholinesterase enzyme

ORGANELLE ENZYMES

ENDOPLASMIC RECTICULUM	 PHASE 1: cytochrome p450, FMO,aldehyde oxidase,carboxyesterase, epoxide hydrolase,prostaglandin synthase,esterase PHASE 2: UDP glucuronosyltransferase, glutathione s-transferase,amino acid conjugating enzymes
CYTOSOL	PHASE 1:alcohol dehydrogenase, aldehyde reductase,aldehyde dehydrogenase,epoxide hydrolase,esterase PHASE 2:sulfotransferase, glutathione s-transferase,N-acetyl transferase,catechol-o-methyl transferase,aminoacid conjugating enzymes
MITOCHONDRIA	PHASE 1 :MAO,aldehyde dehydrogenase,cytochrome p450 PHASE 2 :N-acetyl transferase,amino acid conjugating enzymes
LYSOSOME	PHASE 1:peptidase
NUCLEUS	PHASE 2 :UDP glucuronosyltransferase(nuclear membrane of enterocyte)

Drug metabolising enzymes

ENZYMES

REACTIONS

PHASE 1 "Oxygenases" Cytochrome P450(CYP) Flavin containing monooxygenase(FMO) Epoxide hydrolases(Meh,sEH)

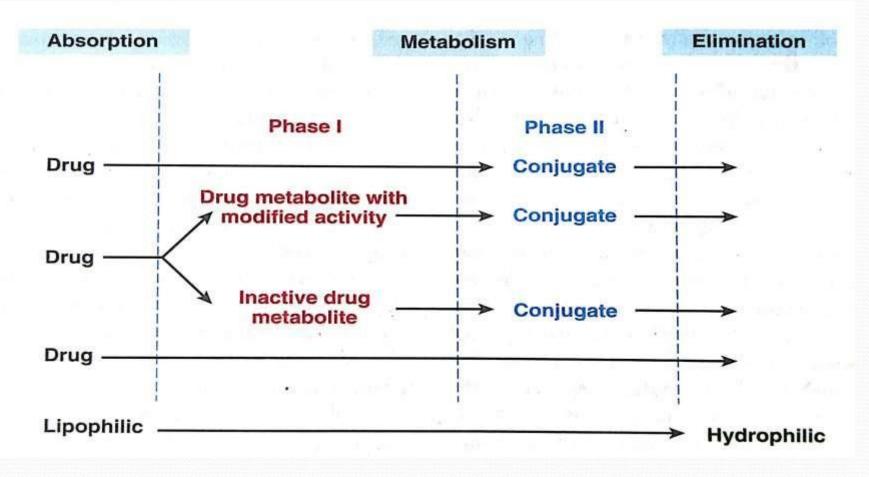
PHASE 2 "Transferases" Sulfotransferases(SULT) UDP-glucuronosyltransferases(UGT) Gluthionine S-transferases(GST) N-acetyltransferases(NAT) Methyltransferases(MT)

OTHER ENZYMES Alcohol dehydrogenase Aldehyde dehydrogenase NADPH-quinone oxidoreductase(NQO) C & O oxidation,dealkylation N,S & P oxidation Hydrolysis of epoxides

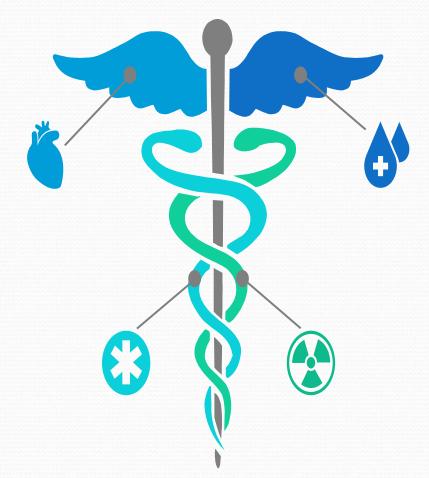
Addition of sulfate Addition of glucoronic acid Addition of glutathione Addition of acetyl group Addition of methyl group

Reduction of alcohols Reduction of aldehydes Reduction of quinones

Drug metabolising enzymes


Drug metabolising enzymes can be broadly divided into two

groups:


Microsomal Non-microsomal

MICROSOMAL	NON MICROSOMAL
Found on ER	Found on sites other tha ER, usually present in the cytoplasm, mitochondria etc
Catalyse glucoronide conjugation, most oxidative reactions, and some reductive and hydrolytic reactions	Non specific enzymes that catalyse few oxidative, reductive, all conjugative reactions other than glucoronidation
Eg;cytochrome p450 monooxygenase, flavin mono oxygenase	Eg:alcohol dehydrogenase, aldehyde dehydrogenase,mono & diamine oxidase

PHASES OF BIOTRANSFORMATION

Thank You

