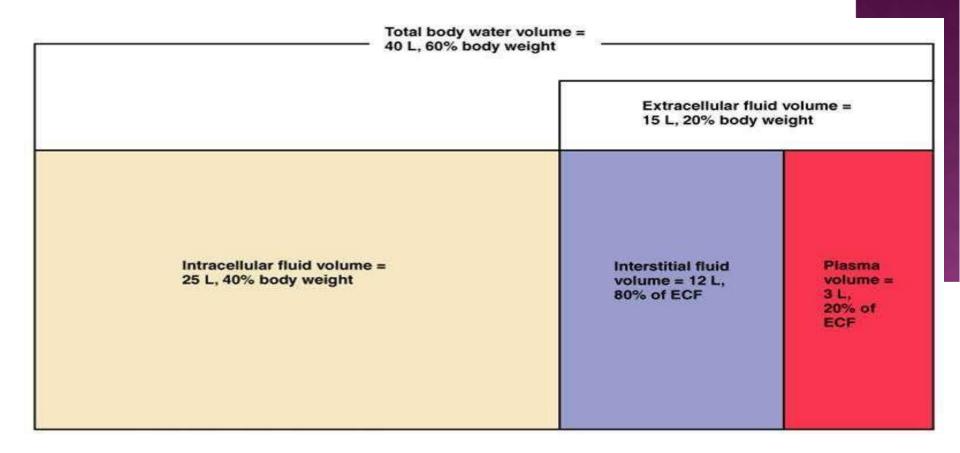


Biopharmaceutics & Pharmacokinetics 8th SEM

Drug Distribution

Dr. Praveen Khirwadkar Institute of Pharmacy Vikarm University Ujjain

INTRODUCTION


- Once a drug enter into a blood stream the drug is subjected to a numbers of processes called as <u>DISPOSITION</u>
 <u>PROCESSES</u> that tend to lower the plasma concentration of drug.
- DISTRIBUTION is a process which involves reversible transfer of a drug between compartments.
- ELIMINATION is a process which involves irreversible loss of drug from the body.

DEFINITION OF DISTRIBUTION

 DISTRIBUTION is reversible transfer of a drug between the ONE COMPARTMENT (Blood) to ANOTHER (Extravascular fluids and tissues).

 Distribution is a passive process for which the driving force is <u>CONCENTRATION GRADIENT</u> between the blood and the extravascular tissues.

Drugs distribution in different compartments of body.

Transcellular fluid(2.5%)– CSF, intraocular, peritoneal, pleural, synovial, digestive secretion, fetus is also special type. Drugs will be in free or bound form.

Body compartment	Types of drugs
Total body water	Small, water soluble alcohol and antipyrine.
Extracellular space	Large, water soluble mannitol
Intravascular space	Very large, strongly protein bound, heparin
Body fat	Highly lipid soluble DDT and thiopentone
Bones	Fluoride and lead

Distribution is a <u>Passive Process</u>, for which the Driving Force is the Conc. Gradient between the Blood and Extravascular Tissues The Process occurs by the Diffusion of Free Drug until equilibrium is established

SIGNIFICANCE

Output: Pharmacological action of drug depends upon its concentration at the site of action.

Distribution plays a significant role in –
a) Onset of action.
b) Intensity of action.
c) Duration of action.

STEPS IN DRUG DISTRIBUTION

 Permeation of free drug present in blood through capillary wall and entry into extracellular fluid (ECF)

- Permeation of drugs present in ECF through the membrane of tissue cells and into intracellular fluid.
- This is <u>RATE LIMITING STEPS</u> and depends upon two factors:
 - a) Rate of Perfusion to the extracellular tissue.
 - b) Membrane permeability of the drug.

DISTRIBUTION PROCESS

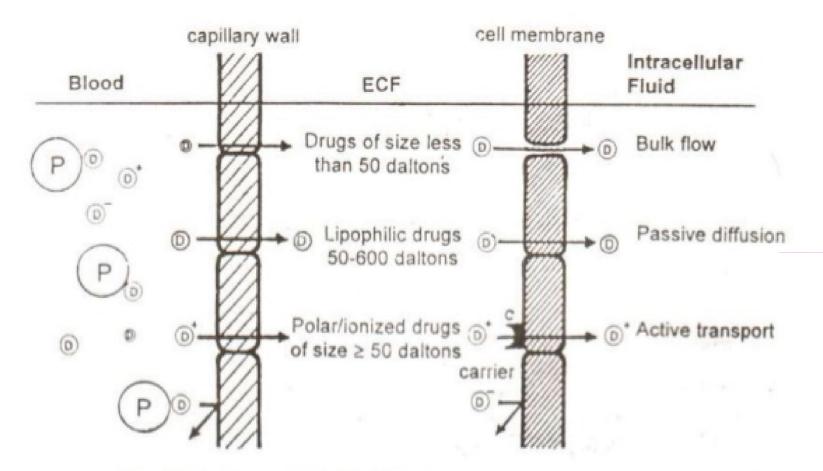


Fig. 3.3 Plasma membrane barrier and drug diffusion across it

Thank You

