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The review is devoted to the historical and modern understanding of rheological properties of emulsions in a
broad range of concentration. In the limiting case of dilute emulsions, the discussion is based on the analogy
and differences in properties of suspensions and emulsions. For concentrated emulsions, themain peculiarities
of their rheological behaviour are considered. Different approaches to understand the concentration depen-
dencies of viscosity are presented and compared. The effects of non-Newtonian flow curves and the apparent
transition to yielding with increasing concentration of the dispersed phase are discussed. The problem of
droplet deformation in shear fields is touched. The highly concentrated emulsions (beyond the limit of closest
packing of spherical particles) are treated as visco-plastic media, and the principle features of their rheology
(elasticity, yielding, concentration and droplet size dependencies) are considered. A special attention is paid to
the problem of shear stability of drops of an internal phase starting from the theory of the single drop behav-
iour, including approaches for the estimation of drops' stability in concentrated emulsions. Polymer blends are
also treated as emulsions, though taking into account their peculiarities due to the coexistence of two inter-
penetrated phases. Different theoretical models of deformation of polymer drops were discussed bearing in
mind the central goal of predictions of the visco-elastic properties of emulsions as functions of the properties of
individual components and the interfacial layer. The role of surfactants is discussed from the point of view of
stability of emulsions in time and their special influence on the rheology of emulsions.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Emulsions, i.e. dispersions of liquid droplets in a continuous liquid
medium, are very interesting objects for rheological investigations.
During the last century, studies of emulsions under deformation have
been the topic of vast and systematic theoretical and experimental
works. Many outstanding scientists and engineers took part in these
investigations. Persistent and unceasing interest in the comprehension
of nature and peculiarities of the rheological properties of emulsions
ll rights reserved.
is determined by the challenge given by numerous and unexpected
effects observed in the flow of emulsions. This interest is also strongly
and permanently motivated by the problems of industry, which proõ-
duces and consumes many hundred thousand tons of emulsions of
various contents, properties and functions. It is the abundanceof chem-
ical compounds and the variation of their nature in composing these
multi-component materials that are the fundamental reasons for
unexpected and new effects in the behaviour of emulsions.

A special and rather interesting line in the studies of emulsions is
their behaviour in the presence of solid components. It is known that
this might be an original way for stabilizing emulsions. Nowadays, this
possibility becomes evenmore attractive bearing inmind the involving

mailto:derksveta@yahoo.com
http://dx.doi.org/10.1016/j.cis.2009.07.001
http://www.sciencedirect.com/science/journal/00018686
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of nano-particles in emulsion recipe and entering the world of nano-
technology for emulsions.

Thousands of publications are devoted to emulsions, and therefore
the following questions are of primarily importance:

-What are general features of the rheological properties of emulsions?
- What are those basic physical properties of liquid components in
emulsions, which determine their behaviour— viscosity and elas-
ticity, possibility to relax, stability in time and resistance to applied
forces in deformations?

- What is the role of interfacial rheology?

This review pretends by no means to mention and list all publi-
cations related to rheology of emulsions. Meanwhile, the maybe even
more ambitious goal is the attempt to understand the most charac-
teristic and general features of emulsions of very different types with
the aim of giving drawing a picture of the state of knowledge and
leading directions of developments in this field. This approach should
be based on the most important theoretical results and representative
experimental data. Discussing the state of art in the rheology of emul-
sions, the present manuscript intends to treat the problems in the uni-
versal terms of continuum mechanics and rheology failing to use any
qualitative and technological estimates because only the approach
based on some general principles provides the chance of reaching the
adequate interpretation of the behaviour of a matter.

It is worth mentioning that the analysis of rheological properties
of emulsions suggests itself either similarity or contradictions with
the behaviour of suspensions, i.e. of dispersion of solid particles in a
matrix liquid. This is quite natural because if we move from the side
of emulsions, then suspensions can be treated as the limiting case of
emulsions when the viscosity of dispersed droplets becomes unlim-
itedly high. Therefore, the two fundamentalmilestones,which are gen-
etically related to suspensions, represent the background of theory and
treatment of experimental data for emulsions.

Firstly, this is the Einstein law [1] for the limiting case of the concen-
tration dependence of viscosity of dilute dispersions, η(φ):

η uð Þ = η0 1 + 2:5uð Þ: ð1Þ

The other version of its formulation is written for a reduced vis-
cosity, ηr:

ηru
η − η0

η0
= 2:5u: ð1aÞ

As one can see, this linear relationship is valid in the limit of very
low concentrations where fluid dynamics or any other interactions
between dispersed particles are absent. It is difficult to find more fre-
quently cited equation, as almost all publications in the field of rhe-
ology of dispersions of any type start with it.

Secondly, there is the Stokes equation [2] for the velocity USt of a
falling hard sphere of radius R in a continuous liquid medium (of vis-
cosity η0), the movement being provided by the density difference Δρ
of the sphere material and the liquid medium, in which it moves:

USt =
2ΔρgR2

9η0
ð2Þ

where g is the gravitational acceleration.
Most likely, it is useful to note that the physical sense of both equa-

tions is very close, which is a consequence of the general momentum
conservation law equations (the Navier–Stokes equations), which are
solved for slow movement (i.e. for the domain of low Reynolds num-
bers, Re≪1) for an infinite space occupied by a viscous liquid [3]. The
Reynolds number is expressed here via the drop diameter d:

Re =
Vd
m
; ð3Þ
where V is the velocity of a drop or a stream flowing round a drop, and
υ is the kinematic viscosity, i.e. viscosity η0 divided by the density of
the continuous medium.

As said above, both Eqs. (1) and (2) were initially obtained for the
dispersions of solid spheres but not for emulsions. However the cor-
relation of experimental results related to emulsions by these equa-
tions is always useful and even necessary. They present the limiting
situation when the viscosity of drops in an emulsion is much higher
than the viscosity of the matrix liquid, and the concentration of drops
is so low that they do not influence the dynamics of the flow around
them.

Coming back to emulsions, the following list of questions should be
considered and (if possible) answered.

- What is the input of viscosity of a liquid forming drops? What
happens in the transition from non-deforming hard spheres to
liquid drops? A transient situation of slight deformable but not
yet fluid particles (e.g. flow of blood where dispersed droplets
are red cells) is of special interest.

- What happens (like in the case with suspensions) if the concen-
tration increases, and it is incorrect to neglect the mutual influ-
ence of the flow dynamics around different dispersed particles,
and it becomes necessary to take their interactions into account?

- What is the role of surfactants, which are most often used for the
stabilization of emulsions?

- What is the role of drop size and size distribution?
-What is the relationship between the deformation of liquid drops
in a flow and orientation of appearing anisotropic structures, and
how do these structure effects influence the rheological proper-
ties of an emulsion as a whole?

- Do drops remain stable in the flow or – as apposed to dispersions
of solid particles – can they be destroyed, and what are laws of
their break-up provided by the action of external forces?

-What happens in the transition to highly concentrated emulsions
which unlike suspensions of hard particles can exist at concen-
trations exceeding the limit of closest packing?

- What is special for emulsions formed with not purely viscous
liquids but with visco-elastic materials, such as mixtures of poly-
mer melts?

The above lists of questions are only the basic problems. An inves-
tigator should answer them first of all, if one pursues the goal of look-
ing inside the nature and tries to describe the properties of emulsions
quantitatively. Just these questions will be discussed in the present
review, and no extensive survey of theoretical deviations neither of the
many different emulsions in practice is given.

2. Viscosity of dilute emulsions — limiting case

A movement of liquid droplets (as well as solid particles) inside
a fluid medium under isothermal conditions can occur due to two
reasons: Brownianmolecularfluctuations and action of dynamic forces
in flow. The ratio of these factors is determined by the dimensionless
factor, the Peclet number, Pe, which is expressed as

Pe =
ηγ̇

kBT = R
3 ð4Þ

where η is the viscosity, γ̇ is the shear rate, kB is the Boltzmann con-
stant, Т is the absolute temperature, and R is the radius of a particle
(either liquid or solid).

The Peclet number is evidently the relationship between char-
acteristic stresses, provided by dynamic (ηγ̇) and diffusional (kBT /R3)
displacements. If Pe ≫1, the diffusion (or Brownian) movement can
be neglected and the fluid dynamic process can be analyzed. As one
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can see, Pe depends strongly on the particle size (proportional to the
cube of R). So, molecular movements become noticeable for rather
small particles only. They should be taken into consideration in the
transition to the nano-size drops.

Below those situations will be discussed exclusively if molecular
movements can be neglected (i.e. the particles are large enough to
allow neglect Brownian motion). Thus, only fluid dynamics problems
will be treated: the behaviour of a drop under action of forces appear-
ing as a result of relative movement of a drop and the surrounding
liquid.

First of all let us discuss the movement of liquid drops of viscosity
ηdr inside another liquid of viscosity η0. The general approach to solve
this problem is analogous by its methodology to the approach to the
theoretical analysis that resulted in the Stokes equation for the move-
ment of a solid sphere in a viscous fluid. However, the possibility of
deformations inside amoving fluid body created some special features
in the problem under discussion.

Hadamard [4] and Rybczynski [5] have independently and almost
simultaneously obtained a solution to the problem. The final formula
(called the Hadamard–Rybczynski equation) gives the expression for
the steady velocity, U, of a settling/rising liquid drop in an infinite
liquid medium under the action of the density difference Δρ, and
reads:

U =
2ΔρgR2

3η0

η0 + ηdr
2η0 + 3ηdr

=
2ΔρgR2

3η0

1 + λ
2 + 3λ

ð5Þ

where λ=ηdr/η0 is the ratio of viscosities of the two liquids.
This equation is valid under the following limitations:

- the flow is laminar and proceeds at low Reynolds numbers
(Re ≪1);

- outer boundaries of space, where the flow takes place, do not
exist and the velocity “at infinity” equals zero;

- time effects are absent and the flow is assumed as stationary (and
steady);

- no dynamic or any other interactions between drops exist, i.e.
perturbations of the flow produced by one droplet in no way in-
fluences the dynamic situation around any other drop.

The further development of the theory is related to the consecutive
refusal from these limitations and it is reasonable to analyze Eq. (5).

It is evident that if the condition ηdr≫η0 is fulfilled (i.e. if the vis-
cosity of a liquid in a droplet becomes much higher than viscosity of a
continuous medium), a drop becomes solid-like. In this case, Eq. (5)
passes into the Stokes law (2) for the movement of solid spheres in a
viscous fluid, i.e. the natural transition from emulsions to suspensions
takes place. It is instructive to compare the velocity of a liquid drop
with “Stokes velocity” USt. As easily seen, the ratio U/USt is equal to

U
USt

=
3 η0 + ηdr
� �
2η0 + 3ηdr

=
3 1 + λð Þ
2 + 3λ

: ð6Þ

This ratio is always larger than 1, whichmeans that the velocity of a
drop settling or rising in an emulsion should be higher than that of a
solid particle under the same driving force (Δρ=const).

This result has the following physical explanation. The fluid flow at
the phase boundary decreases the rate of deformation in the surround-
ing medium and thus decreases the intensity of the energy dissipation
due to viscous friction, which is equivalent to the decrease in the ap-
parent viscosity of an emulsion.

While the correctness of the Stokes law is out of question, the at-
titude to the Hadamard–Rybczynski equation is a bit more compli-
cated. Even the first experimental studies showed that the situation
is rather contradictory. Indeed, early studies [6–8] demonstrated that
the velocity of a settling/rising drop corresponds exactly to the Stokes
equation for solid particles but not to the Hadamard–Rybczynski
equation for liquid drops. However, the results of subsequent studies
[9] carried out with very accurately prepared emulsions have showed
that the velocity of a liquid drop is really higher than that of a solid
sphere. As itwill be discussed below, the keywordshere are “accurately
prepared” and the role of the cover layer has been found to be decisive
[10].

The general explanation of the observed peculiarities of the be-
haviour of fluid drops goes back to the early publication of Boussinesq
[11]. He proposed that a layer with special properties exists or appears
at the drop surface. These properties are described by some two-
dimensional shear viscosity ηs (modernmethods ofmeasuring 2D rhe-
ological properties of interfacial layers are considered in [12]). If so,
the velocity of a settling/rising liquid drop should be described by the
following equation (cited from [13], where an accidental numerical
error in the original publication was corrected):

U =
2ΔρgR2

3η0

η0 + ηdr +
2ηs
3R

2η0 + 3ηdr +
2ηs
3R

: ð7Þ

The conception of the 2D (surface) viscosity shows that the volume-
to-surface ratio plays an essential role in the dynamics of a drop. If
the drop is small, it behaves as a solid-like body. In the opposite case,
volume effects dominate and the situation approaches to the limit
described by the Hadamard–Rybczynski equation.

The main value of the Boussinesq conception consists in the idea
of the special impact of a surface layer, which influences the properties
of a drop as a whole, though it is every likely that the dominating role
belongs not to the surface viscosity but to the elasticity of the interfa-
cial layer provided by the energy of surface tension. This is the reason
why the observed behaviour of drops depends on the methods of
sample preparation for the respective experimental investigations.

The problem of the movement of a liquid droplet in a continuous
medium is in essence equivalent to the estimation of the apparent vis-
cosity of emulsions containingnon-interactingdrops. Indeed, the emul-
sion viscosity was calculated with the same theoretical approach as of
a suspension's viscosity. Therefore, the obtained result is actually the
generalization of the Einstein equation. Taylor [14] solved the present
problem in a rigorous formulation and received the following equa-
tion for the concentration dependence of the emulsion viscosity in the
linear approximation:

ηr = 1 + 2:5
2η0 + 5ηdr
5 η0 + ηdr
� �u = 1 +

1 + 2:5λ
1 + λ

u: ð8Þ

It is not difficult to estimate the boundary cases.
At ηdr≫η0 (emulsion transforms to suspension) the Einstein law

given by Eq. (1) is fulfilled. In the opposite case, at ηdr≪η0, the emul-
sion becomes a foam-like body and in this situation

ηr = 1 + u: ð9Þ

Further development of this approach is based on the conception
of the existence not only of the 2D surface shear viscosity ηs, but also
so the dilatational viscosity ηd, which characterizes the resistance of
an interfacial layer to 2D extension. The result of this approach goes
back to Oldroyd [15] who examined the situation of the combined
action of both viscosities. The final equation in this case reads:

ηr = 1 +
η0 + 2:5ηdr +

2ηs + 3ηd
3

η0 + ηdr +
2 2ηs + 3ηdð Þ

5R

u: ð10Þ

Its generic link with Eqs. (7) and (8) is quite evident. It means that
the Oldroyd equation presents the most general case covering the
theories of Taylor and Boussinesq. Eq. (10) is evidently themost general
rigorous solution to the viscosity problem of dilute emulsions formed
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by two Newtonian liquids in a linear approximation (linear depen-
dence of viscosity on concentration).

It is noteworthy to remind that dispersed drops in dilute emulsions
have always a spherical shape. This is why problems devoted to studies
of more complicated non-spherical fluid particles relate to the non-
stationary behaviour of emulsions. They will be considered in the next
sections in connection with the discussion of the transient states and
shapes of drops in emulsions.

3. Rheological behaviour of concentrated emulsions

The term “concentrated emulsion” covers the wide concentration
domain of intermediate concentrations. Its boundaries are: from one
side, the limit of dilute emulsionswith a linear dependence of viscosity
on concentration (neglecting inter-drop interactions), and from the
other side, the concentration of closely packed spherical drops (drops
remain spherical but it is impossible to add even a single drop with-
out deformation of the others). Actually, this is the same domain as for
concentrated suspensions: the boundary from the low concentration
side corresponds to the absence of any type of interactions between
particles, and the upper boundary is determined by the state of closest
packing.

Like in the case of suspensions, the central theoretical problem is
the understanding and description of inputs of mutual influence of
the flow around neighbouring particles (either solid or liquid). In
other words, it is necessary to find the second virial coefficient А2 at
the squared concentration member in a power series function for the
η(φ) dependence, with the Einstein factor 2.5 at the linear member
leaving untouched.

The effect of insoluble surfactants and the drop deformation on
the hydrodynamic interactions and on the rheology of diluted emul-
sion are the subject of investigations by numerous teams. For exam-
ple for diluted emulsions with mobile surfaces, Danov (see details in
Section 7) derived an interesting new relationship that takes into ac-
count the Gibbs elasticity, and bulk and surface diffusion and viscosity.

Many authors examined this problem, primarily for suspensions.
For emulsions, the dynamic analysis was firstlymade by Batchelor [16]
who received that А2=6.2.

For suspensions, one can find different values of А2 lying in the
range between 5 and 15. Meanwhile it is worth mentioning that the
size of droplets was not taken into account neither in theoretical stud-
ies nor in experimental works carried outwithmodel systems, and the
only total concentration was included in the argumentation. It is un-
likely to be true as a general case because it is well known that the vis-
cosity of suspensions does depend on the average particle size, as well
as on the size distribution, especially when fine particles are discussed.

Several authors obtained more complicated results for the concen-
tration dependence of the emulsion viscosityηr(φ) in the range of inter-
mediate concentrationsbya rigorous analysis of thedynamic equations.
According to [17]:

ηr = 1 +
5:5 4u7=3 + 1− 84

11u
2=3 + 4

K 1− u7=3
� �h i

10 1− u10=3
� �

− 25u 1− u4=3
� �

+ 10
K 1− uð Þ 1− u7=3

� �u
ð11Þ

and according to [18]:

ηr = 1 +
2 5λ − 5ð λ − 1ð Þu7=3
h i

4 λ + 1ð Þ− 5 5λ + 2ð Þu + 42λu5=3 − 5 5λ − 2ð Þu7=3 + 4 λ − 1ð Þu10=3 u

ð12Þ

where, as before, the λ factor represents the ratio of viscosities of
liquids forming the drop, ηdr, and the continuous medium, η0, respec-
tively: λ=ηdr/η0.
It is shown [19] that Eq. (11)fitswell (and even better than Eq. (12))
experimental data formanymodel emulsionsof the “oil-in-water” type,
at least in the range up to φ≈0.6.

Numerous attempts to find theoretically based expressions for the
concentration dependence of the emulsion viscosity are known other
than power series, because the latter approach requires the introduc-
tion of independent coefficients in the series.

The approach proposed in [20] is especially interesting in this
aspect. It is a version of the generalization of the Taylormodel. Thefinal
equation for the concentration dependence of viscosity is:

η
η0

� �2=5 2η + 5ηdr
2 η0 + ηdr
� �

" #3=5
= 1−uð Þ−1

: ð13Þ

This equation fits quite satisfactorily the viscosity of many emul-
sions in a wide concentration range.

Pal [21] proposed another approach for the function ηr(φ) based on
a rather formal method of generalization of the well known equations
valid in the low concentration range. According to this approach, the
type of an emulsion (“water-in-oil” or “oil-in-water”) is irrelevant, which
becomes clear when recalling that this approach is nothing else but a
method for fitting experimental data. Moreover the size of droplets
was not considered as well. Two “ models” were proposed, expressed
by the following equations.

Model I

ηr
2ηr + 5λ
2 + 5λ

� 	1=2
= exp

2:5u
1− u =u⁎ð Þ
� 	

ð14Þ

Model II

ηr
2ηr + 5λ
2 + 5λ

� 	1=2
= 1− u=u⁎ð Þ½ �−2:5u⁎ ð15Þ

As easily seen, Eq. (15) generalizes Eq. (8). However a new factor
φ⁎ is introduced which corresponds to the limit of the closest packing
of drops in the space (as in suspensions), although it was used as a free
fitting factor.

It is not difficult to estimate the limiting situations for bothmodels.
Indeed, in the transition to the domain of dilute solutions, one can
expect that the Einstein law is fulfilled upon the unlimited growth of
viscosity φ→φ⁎, just as in the case of concentrated suspensions of
solid particles.

The important peculiarity (and advantage) of bothmodels consists
in the absence of free (fitting) parameters except φ⁎. This parameter
has a clear physical meaning in considering a possible structure of
the suspension. For emulsions, this is an upper limit of the domain of
intermediate concentrations. Closing this limit, drops in emulsions
can fill the space without changing their spherical shape.

Both the above mentioned models describe rather well experi-
mental data for various real emulsions in a wide concentration range
[21], although their structure underlines the assumption of similarity
in the behaviour of emulsions and suspensions.

Indeed, a successful attempt of describing the concentration de-
pendence of the emulsion viscosity, ηr(φ), bymeans of thewell known
two-terms Vand equation with the second virial coefficient equal to
7.349 was achievedmany years ago [22] and amore complex equation
in form of a power series provides good correlationwith experimental
data in a wide concentration range [23]. It is worth mentioning that
this equation was originally proposed and used for the viscosity of
suspensions.

Finally, the comparison of the concentration dependence of the
emulsion viscosity [24] with the results of rigorous calculations for the
viscosity of suspensions [25] for various emulsions has been made.
In this study, the viscosity of the continuous medium was changed
by 100 times, and consequently, the parameter λ=ηdr/η0 changed



Fig. 1. Comparison of experimental data of the concentration dependence of different
emulsions with some theoretical predictions. (1 — η0=0.997 cP, ηdr=12 cP; 2 — η0=
104 cP, ηdr=12 cP). The curve presents a concentration dependence of the viscosity
calculated for suspensions, the dotted line is the Taylor asymptote. (From [24], Fig. 8,
with kind permission of Elsevier B.V.).

5S.R. Derkach / Advances in Colloid and Interface Science 151 (2009) 1–23
from 0.115 up to 12, and all points for the emulsion viscosity were
perfectly well located on the general curve built for the viscosity of
emulsions (Fig. 1). This result seems remarkable because it clearly
demonstrates that fluid drops in emulsions can behave like solid
spheres in suspensions.

The analysis of experimental data related to viscosity measure-
ments requires the estimation of the impact of a surfactant, which
creates a layer at the surface of the droplets. If the thickness of this
layer is of the same order as the size of a drop, the apparent diameter
appears larger than the real diameter of the drop itself. Taking this
factor into account, it appeared possible to prove that the model of
suspension of solid spheres adequately describes the viscosity of emul-
sions (in the domain of Newtonian flow at low shear rates) [26].

The conclusion of the above discussed experimental results can be
formulated in the followingmanner: emulsions in flow (at least at low
Reynolds numbers) behave quite similar to dispersion of solid parti-
cles. The solid-like behaviour of drops can be explained by the forma-
tion of an elastic interfacial layer at the drop surface, and this elastic
cover changes radically the boundary conditions between the two
fluids and prevents deformations of the liquid inside the drops.

It should also be mentioned that the development of powerful
modern computational methods allows to obtain rigorous quantita-
tive predictions for the concentration dependence of the emulsion's
viscosity (see e.g. [27,28]) including the effect of flow in confined con-
ditions [29].

The increase of the concentration of drops in emulsions results not
only in increased viscosity at lowshear rates (i.e. Newtonian viscosity),
but also in the appearance of strong non-Newtonian effects, a shear
Fig. 2. Flow curves of a model “oil-in-water” emulsion (Average size of drops is 4.6 µm)
in a wide concentration range. (From [19], Fig. 3, Set 4, with kind permission of Elsevier
B.V.).
rate dependence of the apparent viscosity. Experimental data shown in
Fig. 2 are a typical and very characteristic example of that effect.

As one can see from Fig. 2, quite remarkable and even sharp tran-
sitions fromaNewtonian(or almostNewtonian) behaviour to ananom-
alous flow with strongly pronounced non-Newtonian effects occurs
mainly when approaching the upper boundary of the domain of inter-
mediate concentrations.

Fig. 3 is another rather impressive example for the changes in the
character of rheological properties just close to the upper boundary
of the concentration domain under discussion, i.e. when approaching
the state of the closest packing of spherical drops. The sharp transition
takes place in a narrow concentration range where a radical change in
rheological properties of the emulsions is observed.

As seen from Figs. 2 and 3 the approach to the limit of high con-
centration and transition beyond the closest packing of non-deformed
spherical drops leads to principle changes in the rheological proper-
ties of emulsions: Newtonian viscous flow is replaced by a visco-plastic
behaviour with jump-like (up to seven orders of magnitude) decrease
of the apparent viscosity in a narrow range of stresses. An upper limit
of the domain of Newtonian flow still exists. Such type of rheolgical
behaviour is typical for multi-component systems with a coagulate
structure formed by the dispersed phase [31]. The jump in the apparent
viscosity at some shear stress is the reflection of the rupture of the
structure, and this stress is treated as the yield stress. The existence of
the yield stress will become even more evident upon further increase
of concentration into the domain of highly concentrated, so-called
“compressed” emulsions, which will be discussed in the next section.

The increase in concentration also enhances the influence of the
drop size on the rheology of emulsions. As mentioned above, the drop
size influences the volume-to-surface area ratio: the increase of diam-
eter leads to a more pronounced effect of the flow inside the drops.
This phenomenon becomes even more significant when approaching
to the upper boundary of the domain of intermediate concentrations.
Fig. 4 illustrates this effect. The experimental data show figures were
obtained for emulsions with polydisperse drops, the effect of which
is evident. In the low concentration range (the left part of the figure)
the drop size is irrelevant while in the range 0.6bφb0.75 (the right
part of the figure) the average size of droplets strongly influences the
viscosity.

Also other rheological effects become possible at high concentra-
tions (in the concentration domain under discussion, i.e. at φbφ⁎).
One of such effects is the viscous thixotropy [32] because the inter-
facial layers in the closely arranged drops can produce some kind of
structure, which is destroyed by deformation and restores at rest. The
interaction between drops and evolution of their shape in flow can
also result in visco-elastic effects. This conception was rigorously for-
mulated in a classical publication [33] and then further developed (see
e.g. [34]).
Fig. 3. Flow curves of “water-in-oil” emulsions when approaching the concentration
limit corresponding to the closest packing state of spherical drops. Aqueous phase
comprises water with 0.5% NaCl; Oil phase is cyclomethicon. (From [30], with kind
permission of Prof. Lapasin).



Fig. 4. Concentrationdependences of the viscosity of emulsions for different average sizes of drops (size is shownat the curves). (From [19], Fig.1,with kind permission of Elsevier B.V.).
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A drop in shear flow transforms into a prolong particle (ellipsoid)
with the principle equatorial radii Rmax and Rmin. The degree of elon-
gation (or asymmetry) is characterized by a dimensionless factor D
expressed as

D =
Rmax − Rmin

Rmax + Rmin
: ð16Þ

The D value for a non-deformed sphere is evidently zero.
As a result of deformations, the D value reaches a value D0, and

after the flow is stopped the reverse process takes place and the value
of D returns from D0 to zero. When the deformations are not too large,
the restoration follows theMaxwell model of relaxationwith a charac-
teristic relaxation time θ:

D = D0e
− t = θ

: ð17Þ

According to the Oldroyd model, this characteristic relaxation time
θ can be expressed by

θ =
η0R
σ

3 + 2λð Þ 16 + 19λð Þ
40 λ + 1ð Þ : ð18Þ

Eq. (16) definitely shows the driving force of the restoration pro-
cess, the surface tension σ. The area of the drop surface increases due
to deformation and this is the source of additional stored energy.

Oldroyd also received the equation for a retardation time, which
does not coincide with the relaxation time, as follows from the theory
of linear visco-elasticity. Thus, the reason of visco-elasticity in the flow
of emulsions is the droplet deformation under the action of shear
stresses, and the mechanism of restoration related to surface tension.

The Oldroyd model also predicts an important result called “simi-
larity rule” [35]. According to this rule, the frequency dependence of
the complex viscosity η⁎(ω) should be equivalent to the shear rate de-
pendenceof theapparent (non-Newtonian)viscosityη⁎(γ̇)of theemul-
sions in steady flow:

η⁎ ωð Þ = η γ̇ð Þ: ð19Þ

The first difference of normal stresses (τ11−τ22) practically coin-
cides with the doubled value of the imaginary part of the complex
viscosity η″ (ω) multiplied by frequency:

τ11 − τ22i2ωηW ωð Þ: ð20Þ

Eq. (19) is the well known Cox–Merz rule for visco-elastic polymer
melts [36], and Eq. (20) was theoretically obtained [37] for visco-
elastic polymer melts too (see for details [38]).
Thus, the similarity rule appears to have a general value for differ-
ent media regardless of the nature of their elasticity. Its validity is not
restricted to polymeric substances described in numerous publica-
tions on polymer rheology. One can expect that this rule works always
if elasticity (or relaxationphenomena) appears due towhatever reason.
The Oldroyd model says that non-Newtonian effects appear due to the
same reasons.

A confirmationof the similarity rule is given in [35] byexperimental
data obtained for “two-phase solutions” of biopolymers. Such solutions
(emulsions) are surely visco-elastic, though in that case this effect
might be explained by the dynamics of polymer chains. However the
similarity rule was convincingly demonstrated in the range of shear
rates (frequencies) covering more than four orders of magnitude.

4. Highly concentrated emulsions as visco-plastic media

The tendency to increasing the concentration of a dispersed phase
(drops) is explained by the fact that just this phase contains compo-
nents, for which an emulsion has been created bearing in mind its
application, while the continuous phase is nothingmore than a carrier
for these useful-in-application properties and therefore represents the
ballast.

Emulsions at a concentration of the dispersed phase exceeding the
limit of the closest packing of spherical drops (without any deforma-
tion),φ⁎, are called highly concentrated. The parameterφ⁎ corresponds
to the concentration of the closest packing of spherical particles in
space. Depending on the size distribution and arrangement of drops in
space, the limit value of φ⁎ is about 0.71–0.75.

Some examples of application fields of highly concentrated emul-
sions are cosmetic industry, production of some food stuffs, liquid
explosive compositions and so on.

Creating highly concentrated emulsion (with φNφ⁎) can be real-
ized by deformation of spherical droplets via compression of a disper-
sion resulting in the transformation of spherical drops into particles of
different tightly packed polygonal shapes occupying the space.

The general thermodynamic approach to understanding the nature
and properties of highly concentrated emulsions was proposed by
Princen [39]. According to his approach, later developed in many pub-
lications, highly concentrated emulsions are created by application
of outer pressure that compresses drops and transforms them from
spheres to polygons. By its physical nature, this outer pressure is equi-
valent to the osmotic pressure П, acting inside the thermodynamic
system. The work produced by this pressure when creating a highly
concentrated emulsion is equal to the stored energy given by the in-
crease of droplet surface area S due to changes in shape. This equality is
written as:

−ΠdV = σdS ð21Þ



Fig. 6. Frequency dependencies of the elastic modulus for model emulsions of different
concentrations — monodisperse droplets of poly(dimethyl siloxan) in water, according
to Mason et al. [41], Fig. 5.
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and shows that work produced by the osmotic pressure for decreasing
the volume of the system ПdV equals to the work used for creating
additional new surface dS (here σ is the interfacial tension).

Substituting the expression for concentration leads us to the final
equation for the osmotic pressure as a function of concentration φ and
change of surface area S (reduced by the volume, V):

Π = σu2 d S = Vð Þ
du

: ð22Þ

The stored surface energy serves as a source of elasticity of the sys-
tem as a whole (i.e. highly concentrated emulsion), which is observed
in shear deformations [40–43]. The experimental evidence of this con-
ception is seen in close correlation between concentration dependen-
cies of the shear elastic modulus G and osmotic pressure П, as shown
in Fig. 5 [40]. The experimental data in this figure are reduced by the
value of the Laplace pressure (σ/R). Moreover, not only a qualitative
correlation but also even equality of these valueswas observed, though
the theory does not require it and the reasons for this equality are not
evident.

Using a reduction factor (σ/R) reflects the proposed conception
of elasticity of highly concentrated emulsions as the consequence of
the increase of surface energy upon compression of a drop as devel-
opedbyPrincen aswell as byMason et al. [40]. This approachpresumes
that both parameters, G and П, should be inverse proportional to the
drop size.When speaking about the concentration dependence of elas-
ticity, the argument in the concentration dependencies should be the
product φ1/3 (φ−φ⁎) or φ(φ−φ⁎), as discussed in [44] and [41,42],
respectively. The difference between the two approaches is not princi-
ple from an experimental point of view, because highly concentrated
emulsions exist inside a rather narrow concentration window, prac-
tically from 0.71 till 0.92. However, another point is important: any
parameter characterizing highly concentrated emulsions as solid-like
“mild” elasticmedia are approaching zero atφ→φ⁎ from the high con-
centration side. In other words, solid-like properties of emulsions can
be observed in the concentration domain φNφ⁎.

Indeed numerous direct measurements presented in literature
demonstrate that the values of φ⁎ lie in the range between 0.71 and
0.74. This range corresponds to the closest packing of spherical parti-
cles bearing in mind that they can be polydisperse. Further below,
some experimental data will be shown, which illustrate the role of
concentration.

The above cited conception of elasticity of highly concentrated
emulsions looks rather transparent and even evident. However some
publications mentioned that real values of the elastic modulus some-
times appearmuch higher (for example for protein stabilized emulsions)
Fig. 5. Correlation between the elastic modulus G (open circles) and osmotic pressure
П (filled circles) for highly concentrated emulsions. (According to Lacasse et al. [40],
Fig. 1).
than predicted by this theoretical model [45–47]. Thus, other concep-
tions explaining elasticity of highly concentrated emulsions are pos-
sible and necessary.

Meanwhile, it is indisputably that highly concentrated emulsions
can be treated as “mild” elastic materials with a concentration depen-
dent elastic modulus. Therefore direct measurements of elastic prop-
erties of emulsions are of primary interest, and these properties have
been measured in a very wide frequency range for different systems
[39,48–54].

A typical and rather obvious example of the results of these mea-
surements is presented in Fig. 6. One can see that the elastic modulus
is constant in a very wide frequency range covering several orders of
magnitude. Such kind of behaviour is standard for ideal elastic mate-
rials, the elastic modulus of which must be independent of frequency.
Hence, in a first approximation, highly concentrated emulsions can be
classified as linear (in a mechanical sense) elastic materials. Mason
[42] marked that the elastic modulus increases at very high fre-
quencies only (see diagram in Fig. 7) and treated this effect as a mech-
anical glass transition of an emulsion as a visco-elastic material.

These results by far do not exhaust the rheology of highly concen-
trated emulsions. The matter of fact is that these emulsions demon-
strate strongly non-linear visco-elastic, as well as viscous behaviour.

An indication of the non-linearity of visco-elastic properties is
the observed amplitude dependence of the elastic modulus at any
deformation frequency. High deformations (or high stresses) lead
to “softening” of the material as seen from the decreased modulus
Fig. 7. Complete frequency dependence of the dynamic modulus components for a
model emulsion —monodisperse droplets of poly(dimethyl siloxan) in water. φ=0.98,
R=500 nm. (From [42], Fig. 4, with kind permission of Elsevier B.V.).



Fig. 8. Non-linearity of viscoelastic properties of highly concentrated (cosmetic grade)
“water-in-oil” emulsions at large amplitude of deformation. (From [55], Fig. 1, with kind
permission of Springer Science + Business media).

Fig. 9. Flow curves of highly concentrated “water-in-oil” emulsions demonstrating the
existence of the yield stress (used as liquid explosives), different concentrations of a
dispersed phase — shown at the curves. (From [54], Fig. 7b, with kind permission of
Springer Science + Business media).

Fig. 10. General peculiarities of rheological properties of emulsions in the whole con-
centration range of the dispersed phase. I — domain of dilute emulsions — Newtonian
liquids with η=const; II — domain of intermediate concentrations — emulsions are
liquids with weakly pronounced non-Newtonian behaviour; III — domain of relatively
high concentrations — non-Newtonian effect is strongly expressed and thixotropic and
viscoelastic effects are possible; IV — domain of highly concentrated “compressed”
emulsions — visco-plastic materials with obvious yield behaviour and wide frequency
range of elasticity with constant shear modulus.
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upon increasing the amplitude of deformation [55,56]. An example
of this phenomenon is shown in Fig. 8. Such kind of behaviour is
characteristic to different structurized colloidal systems: the growth
of the deformation amplitude in periodic oscillations leads to a de-
struction of the inner structure and, as a consequence, to the decrease
of the elastic modulus [56].

It is rather interesting to compare the amplitude dependencies of
the elastic (storage) modulus G′ and the loss modulus G″ under large
deformations. As was said above, highly concentrated emulsions be-
have like elastic media, and hence G′NG″ in this amplitude domain.
However along with increasing amplitude a solid-like to liquid-like
transition takes place and the deformation γ⁎, at which G′=G″, can
be considered as quantitative measure of this transition representing
the point of rupture of the material structure [57]. It was noticed that
γ⁎≈0.1 for monodisperse emulsions, while for polydisperse emul-
sions γ⁎ is much lower and of the order of 0.01–0.02. This effect might
reflect the peculiarities in structure of mono- and polydisperse emul-
sions. Meanwhile, the value of γ⁎ for monodisperse droplets of a poly
(dimethyl siloxane) is no more than 0.004 [57]. Large amplitude oscil-
latory shear experiments can be used as a useful tool to probe the non-
linearity of different media [58].

The reverse effect has also been observed: structure formationwith
increasing amplitude of deformations in oscillations [59]. This is an
analogue of anti-thixotropy — the growth of viscosity with increasing
rate of deformation.

Upon the application of constant stress (or shear rate) highly con-
centrated emulsions flow like any other liquids demonstrating strong
non-Newtonian behaviour, which becomes possible beyond some
stress threshold, which obviously has the meaning of a yield stress,
τY. Typical complete flow curves of highly concentrated “water-in-oil”
emulsions (used as liquid explosives) are shown in Fig. 9 for several
systems with varying the concentration of the dispersed phase.

As seen the yield stress remarkably increases even at rather slight
increase of the dispersed phase concentration. Flow of highly concen-
trated emulsions is impossible at stresses below the yield stress (τbτY).
Therefore the domain of “upper Newtonian viscosity” described for
these materials should be treated as an artefact obliged to a long tran-
sient region of deformations before the steady state flow is reached.
This is an example of “rheopectic” behaviour as was proven in [60].

A scheme of generalizing the characteristic peculiarities of the evo-
lution of rheological properties of emulsions in the transition from
dilute (at φ≪1) to highly concentrated emulsions (in the domain
φNφ⁎) is shown in Fig. 10.

The transition into the domain of highly concentrated emulsions
is accompanied by changes in the type of concentration dependencies
of rheological properties and the influence of the droplet size. An
argument, which is reasonable to use in discussing concentration de-
pendencies of rheological properties is the difference in concentration
in respect to the concentration of closest packing of spherical droplets,
i.e. the difference (φ−φ⁎). Typical concentration dependencies of the
elastic modulus G, and yield stress τY, are shown in Fig. 11.

The τY(φ) dependence is not presented in the original publication
[54], but it can be easily reconstructed from their Fig. 7. The depen-
dence G(φ) presented in Fig. 10 was recalculated from data given in
[54] in form of G/φ1/3 according to the theory presented in [44]. The
transition to the dependencies of absolute values of G and τY allows
us to establish that the critical concentration φ⁎ is the same for both
considered functions, G(φ) and τY(φ).

The presentation of concentration dependencies of G and τY in
Fig. 11 as linear functions of the argument (φ−φ⁎) is not in contra-
diction to the conception of Princen discussed above. According to
Princen [44], the argument should be φ1/3(φ−φ⁎). Meanwhile, the
argument obtained in [40] was assumed as φ(φ−φ⁎). However the
narrow range of concentrations and possible experimental errors do
not lead to unambiguous conclusions about the “correct” choice of the
argument.

The problem of the influence of droplet size in the domain of
highly concentrated emulsions was considered in [61] where it was
demonstrated that the viscosity of emulsions of smaller droplets is
higher than that of emulsions formed by larger drops. Besides the non-
Newtonian behaviour is much more strongly expressed for dispersion
of fine droplet, as illustrated in Fig. 12.



Fig. 11. Concentration dependencies of elastic modulus G (а) and yield stress τY(б).
(From [54], Figs.15 and 16, with kind permission of Springer Science+Businessmedia).
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However, judging from the shape of the observed curves, these
dependencies more likely belong to the domain III than IV in Fig. 10,
because no visible yielding behaviour is visible in these curves. Though
the data refer to rather high concentration, nevertheless the concen-
tration is below the φ⁎ threshold due to the wide polydispersity of the
studied samples.

More definite information on the role of droplet size in the domain
IV is presented in [51,54]. It is doubtless that the droplet size influences
the viscosity of emulsions, confirmed by numerous experimental stud-
ies. However, it is rather difficult to formulate any definite quantitative
Fig. 12. Flowcurves of emulsions with fine (average size 12 μm) and coarse (average size
30 μm) droplets, at the same concentration of the dispersed phase φ=0.76. (According
to Pal [61], Fig. 2с).
conclusions because it is not clear how to choose viscosity values from
non-Newtonian flow curves for their comparison. Strategies based on
modulus and yield stress measurements are more definite. Surely, it
would be more instructive to have data for monodisperse droplets. To
our regret, such results are unknown andwe focus on data obtained for
polydisperse samples. A typical example is shown in Fig. 13.

It is well seen that the dependence of modulus on average droplet
size D23 is satisfactory approximated as a reciprocal squared function:

G = aD−2
32 ð23Þ

wherе a is an empirical factor.
It is worth mentioning that according to the generally accepted

Princen–Mason model the dependence of G vs. D was always con-
sidered as reciprocal linear (but not squared) as it follows from the
basic conception of elasticity of highly concentrated emulsions. Just
this concept allows normalizing the modulus by the Laplace pressure
(σ /R).

Thus, experimental data as well as the theoretical conception pre-
dict that the solid-line behaviour of highly concentrated emulsions
enhances along with decreasing droplet size, though the quantitative
character of the size factor remains disputable.

The boundary conditions formoving highly concentrated emulsions
through a channel are also one of their important rheological features.
The problem is formulated as follows: does the standard hypothesis of
wall stick (zerovelocity at the solidwall),which is universally accepted
in solving any boundary problems in fluid dynamics, remain valid for
emulsions?

A possibility of wall sliding is rather evident for the movement of
suspensions because boundary conditions can be changed due to their
interaction with the wall. Numerous experimental studies (see e.g.
[62,63]) carried out by changing from a smooth to a rough surface or
by varying the ratio between surface area and volume of a sample
(using different gaps between stationary and rotation surfaces in
rotational devices or the diameter of a capillary) have proven that wall
slip in the flow of colloid dispersions is possible.

Meanwhile the answer about the possibility of wall slip in the flow
of emulsions is not so obvious. Doubts are connected with the struc-
ture of emulsions, which, in opposite to suspensions consist of fluid
components and for any of them the hypothesis of wall stick can be
valid. However – in opposite to this argument –we have to accept that
drops of the dispersed phase in an emulsion behave as quasi-solid
particles, as was discussed in previous sections, and wall slip for such
“quasi-suspensions” is quite possible.
Fig.13.Dependence of the elasticmodulus on the average droplet size for highly concen-
trated emulsions. The modulus values were obtained by two corresponding methods —
as the plateau in the frequency dependence of the modulus, and from elastic recoil after
cessation of loading with constant stress. (From [54], Fig. 16, with kind permission of
Springer Science + Business media).



Fig. 14. Flow curves of an emulsion (squares) in comparison with a microgel dispersion
(circles) at the same viscosity above the yield stress. Filled symbols reflect the effect of
wall slip, open symbols present true flow curves. (From [70], Fig. 9, with kind permis-
sion of Springer Science + Business media).
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Wall slip was really observed in the flow of mayonnaise (a typical
emulsion) in a rotational viscometer [64]. The author of the review
[65] stated that wall slip is a necessary effect in flow of emulsions, and
there is a solid body of experimental facts confirming this conception
[66]. A strong effect of slip of 80% water dispersion in thickened
Vaseline was also observed in the flow of this emulsion in a rotational
viscometer with smooth surfaces [67]. An even stronger effect of wall
slip was described for shear deformations of foams [67]. It is reason-
able to think that their rheology is similar to the rheology of emulsions
when zero viscosity of dispersed droplets is assumed.

Moreover direct measurements of velocity profiles carried out by
the method of dynamic light scattering [68] showed that wall slip is
undoubtedly present in channel flow of dilute emulsions (φ=0.20) as
well as of highly concentrated (φ=0.75) ones. These effects were
quite independentof theflowcurvesof emulsionsbecausedilute emul-
sion showed a Newtonian viscosity while the concentrated one be-
haved in a non-Newtonian manner.

Independent direct measurements of velocity profiles in channel
flow of a classical model system (droplets of poly(dimethyl siloxane)
in water in the concentration range from 50 to 78.5 vol.%) and an in-
dustrial product (mayonnaise) carried out by NMR-velocimetry have
also led to the conclusion that wall slip is an obligatory component in
shearing emulsions [69].

In the light of this discussion, the results of parallel studies of flow
of a typical highly concentrated model emulsion (silicon oil-in-water
at concentrationφ=0.77) andmicrogel particle suspension are rather
significant [70]. The results of the comparison are shown in Fig.14. As it
can be seen, wall slip strongly increases an apparent shear rate γ̇a in
comparison to the real (volume) shear rate γ̇ in the range below the
yield stress where true flow is impossible. It is interesting to note that
the effect ofwall slip proved to be even stronger for emulsion than for a
suspension. The explanation of this effect was connected with the
Fig. 15. Sequence of stages of deformation of a liquid drop in flow of an emulsions. Numerical m
Business media).
smaller size of dispersed drops in emulsions (1.5 μm) as compared to
particle's size in suspensions (220 μm).

Direct measurements of the wall velocity showed that Vs is pro-
portional to the squared shear stress in the flow of dispersions of
“mild” elastic particles in the range of a solid-like behaviour [70],
Vs∞τ2, however, no influence of the volume-to-surface area ratio
(varied by changing the gap in a rotational rheometer and the dia-
meter of a capillary) on the flow of highly concentrated explosive
emulsions was observed [54,60]. This is possible if wall slip is absent
or negligible only. The absence of wall slip was also confirmed by a
large-scale application experiment testing an industrial set-up for
calculating the transportation characteristics of pipe-lines [71]. It is
quite possible that the absence of wall slip in these tests is explained
by the method of measurements, because flow curves were measured
in a device with artificially roughened surfaces that excluded wall slip,
and the pressure in the industrial pipe-line was so high that bulk flow
prevailed over possible wall slip.

5. Deformation and break-up of droplets in emulsions during flow

Deformation of drops in flow precedes their break-up. Therefore,
initially it is necessary to monitor how the deformation of liquid drops
occurs in a flow.

There are many publications demonstrating the mechanism and
stages of deformation of liquid drops in shear and/or elongation flows
preceding break-up. Data of this kind are obtained either by direct
opticalmethods using a high-speed camera or bynumericalmodelling.
Fig. 15 (according to [72]) is an example of numerical results of such
kind (see also [73]).

The problems of quantitative understanding of how morphology
of drops in a viscous liquid medium is changing and what the impact
on the rheological results of drop deformations is, were the subject of
vigorous theoretical and experimental investigations during the last
20 years.

Stresses acting on a liquid drop transform its shape in such a man-
ner that it becomes an ellipsoid with the principle maximal Rmax and
minimal Rmin semi-axes. Then, as was already said in Section 3, the
morphology of a drop is characterized by a dimensionless factor— the
degree of anisotropy D, described by Eq. (16).

In addition it is important to know the orientation of a drop deter-
mined by its angle of inclination, θ, of the principle axis in relation to
the direction of flow.

The driving forces of deformation are shear stresses, while inter-
facial tension is the resistance force supporting the shape of a drop.
Therefore the realized morphology of a drop is determined by the
ratio of these forces expressed through the Capillary number Са:

Ca =
η0γ̇
σ = R

ð24Þ

where η0 is the viscosity of the continuous medium, γ̇ is the shear
rate, σ is the interfacial tension, and R is the drop radius.

The fundamental linear approximation for calculating the degree
of anisotropy is based on the classical Taylor model for the viscosity of
odelling. Ca=0.4; Re=2. (From [72], Fig.11, with kind permission of Springer Science+
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dilute emulsions [74]. In this approach, the degree of anisotropy of
deformed drops is expressed by

D =
16 + 19λ
16 λ + 1ð ÞCa; ð25Þ

Deformation of drops in a liquid flow is really determined by the
viscosity of the continuous phase. This conception was confirmed in a
rather original way — by an inverse calculation of the viscosity from
monitoring the shape of a drop in flow, the drops being covered by
surfactants for increasing their stability [75].

The expression for the anisotropy of drops in another approxima-
tion based on themodel for a moderately concentrated emulsions tak-
ing into account dynamic interaction between drops (see Section 3) is
written as [76]:

D =
16 + 19λ
16 λ + 1ð Þ
� 	

1 +
5 2 + 5λð Þ
4 λ + 1ð Þ u

� 	
Ca: ð26Þ

The correctness of this equation was investigated and supported
in [77], though for equi-viscous emulsions only (λ=1) but different
concentrations of the dispersed phase. It was shown that a good corre-
lation exists between theoretical predictions and experimental results,
though coalescence of droplets and vibration around some average
position happened in the domain of moderate concentrations.

A rather successful method was used in generalizing experimental
results obtained for different concentrations. The approach used for
this purpose was based on the modification of a standard expression
for the Capillary number. This was done by changing constant visco-
sity of a continuous phase η0 for the “mean field” viscosity, the latter
was assumed as the viscosity of an emulsion as a whole, ηem. This
method was firstly proposed in [78] for the analysis of the break-up
of droplets in a shear flow of concentrated emulsions (see below).

In this approach a modified (“mean field”) Capillary number is
written as

Cam =
ηemγ̇
σ = R

: ð27Þ

This approach provided a possibility to present all experimental
values of drop anisotropy as a function of shear rate for emulsions of
different concentrations as a unique function of themodified Capillary
number Cam, described by the Taylor Eq. (25). The result shown in
Fig. 16 looks quite convincing, although for a single value of λ only.

However it was noticed in [79] that the viscosity calculated by the
model given in [18] (see Eq. (12)), is always overestimated in com-
Fig. 16. Dependence of the anisotropy of a droplet in flow of emulsions of different con-
centrations plotted in terms of themodified (”mean field”) Capillary number. The straight
line corresponds to the dependence D(Cam), calculated by Eq. (25) after change of Ca to
Cam. (From [77], Fig. 8, with kind permission of Springer Science + Business media).
parison with experimental data. It means that this model is not
completely adequate to the real behaviour of emulsions, as it was
already mentioned in Section 3.

Palierne proposed the solution of the problem of deformation and
orientation of liquid drops in flow for the linear range of periodic os-
cillations [80]. In other words, he investigated the dependence of
visco-elastic properties of emulsions on the characteristics of the sys-
tem and frequency. Then the generalization of the theory for the non-
linear domain of mechanical behaviour of emulsions was proposed
in [81]. A complete model of visco-elastic behaviour of the emulsion
of two immiscible liquids was developed in [82,83]. Final analytical
results (though related to the domain of moderate concentrations and
not taking into account possible droplet coalescence and brea-up) can
be found in [84,85]. These studies do not treat only the linear domain
of deformations but non-linear effects as well, covering high shear
rates and large amplitude periodic deformations.

A clear connection between the morphology of emulsions (i.e. the
shape of droplets and their orientation inflow) and thewhole complex
rheological behaviour was established in a series of publications [80–
85] for various flow geometries. The final results were obtained in an
analytical form, though they are rather complicated. As an example,
only the expression for shear stresses τ for a steadyflow is given below,
as it illustrates the input of themain factors— shear rate and interfacial
tension (presented via the Capillary number), ratio of viscosities of
both phases λ and concentrationφ (though in the domain of moderate
values). The final formula for the dependence τ(Ca) is:

τ =
2KCaf1f

2
2

3 Ca2 + f 21
� � ð28Þ

where the factors f1 and f2 reflect the role of λ and are expressed in
the following manner:

f1 =
40 λ + 1ð Þ

3 + 2λð Þ 16 + 9λð Þ ; ð29aÞ

f2 =
5

3 + 2λ
: ð29bÞ

One can easily see that these factors are close to the coefficients
obtained earlier (see Eq. (18) in Section 3).

The factor K represents primarily the influence of concentration on
viscosity. Its analytical expression is given by:

K =
6σ
5R

� �
λ + 1ð Þ 3 + 2λð Þu

5 λ + 1ð Þ− 5 2 + 5λð Þu : ð30Þ

The cited publications also give analytical expressions for the first
and second differences of the normal stresses in shear flow, describe
the stress evolution in transient regimes of deformations, and the fre-
quency (in the linear domain) and amplitude (at large deformations)
dependencies of the complex elastic modulus.

A problem of calculating droplet deformations in a flow of viscous
liquid was rigorously formulated in [86]. This deformation consists in
the transition from spherical to ellipsoidal shape. The exact solution of
this problem (but without taking into account interfacial tension) was
obtained in [87]. At last, in [88] the authors proposed a complete solu-
tion of the problem including the influence of all factors influencing
the shape of a drop. One can estimate the quality of the solution re-
ferring to Fig. 17 where the calculated values of the anisotropy of a
drop (found as the D values according to Eq. (16)) and its orientation
θ as functions of the Capillary number Ca are compared with experi-
mental data.

Deformation of drops in a flow (transition from spherical to ellip-
soidal shape) surely influences the viscosity of an emulsion [89]. This
is confirmed by direct measurements of a model system – emulsion of



Fig. 17. Comparison of the theoretical predictions for the liquid drop deformation (left) and orientation (right) in a viscous liquid flow (λ=3.6) with experimental data (points).
(From [88], Fig. 6, with kind permission of Springer Science + Business media).
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water droplets in a rather viscous alkyd resin – in the domain of low
shear rates where no noticeable deformation of droplets takes place.
The concentration dependence of emulsion viscosity was found to be
very close to the concentration dependence of suspension viscosity,
as it was discussed in Section 2 [90]. However the situation changes
radically at high shear rates where droplets are strongly deformed due
to low values of the viscosity ratio λ. As a result, a non-Newtonian
flowwas observed and the concentration dependence of viscosity was
described (at high shear rates) by the empirical formula:

η = η0 1− uð Þ; ð31Þ

As one can see, the viscosity of an emulsion becomes less than the
viscosity of the continuous medium.

As usual, the problem of calculating the deformation of liquid drops
in a flow is considered without taking into account inertia (i.e. at very
low Reynolds numbers). However, estimations show that the increase
of the Reynolds number enhances the impact of inertia, which in turn
leads to stronger deformations of a drop and consequently to the
growth of stresses in an interfacial layer [72,91]. It also influences the
stability of drops, which – as will be discussed below – is determined
by surface stresses.

The possibility of drop break-ups is governed by the fact whether
outer forces (stresses) applied to a drop exceed the forces (stresses)
stabilizing its shape. As was mentioned earlier, the stability of a drop
is supported by a surface force characterized by the Laplace pressure
(σ/R), where σ is the surface tension and R is the radius of a drop.
Outer stresses are created by a flow around the drop. They are deter-
mined by the product (η0γ ̇), the shear stress, where η0 is the viscosity
of a continuous medium, and γ̇ is the rate of deformation (in shear).
Fig. 18. Dependence Ca⁎ (λ) for the full range of λ values in simple shear and two-
dimensional extension flow. (According to Grace [93], Fig. 14a).
The ratio of the discussed factors is the Capillary number Ca (see
Eq. (24)).

The determining factor for drop stability is a critical value of the
Capillary number Ca⁎, which follows from theoretical calculations and
experimental data and depends on the ratio of viscosities of the drop
and continuous phase: λ=ηdr/η0.

The values of Ca⁎ decrease with the increase of λ in the domain
λb1. As result in one of the earlier publications [92] the following
quantitative approximation for the function Ca⁎(λ) at rather small
values of λ is proposed:

Ca⁎ = 0:054λ−2=3
: ð32Þ

More complete results were obtained by Grace [93], who examined
not only simple shear but also two-dimensional extension (kinema-
tically equivalent to pure shear) deformations. His final results are
presented in Fig. 18 for the full range of λ values.

The two following results are of special interest. Firstly, there is
some minimal limit of Ca⁎=0.4 approximately corresponding to the
equality of viscosities of drop and matrix liquid (λ.=1). Secondly,
drops do not break down in laminar flow at all in the domain λN4 (the
right side of Fig. 18). It corresponds to drops of high viscosity.

The results of systematic investigations of the problem of break-up
of single drops are presented in Fig. 19 for a simple shear deformation.
The break-up condition was defined as the limit of their deformations
(see above). It was assumed that when a deformation results in some
steady state of a drop, then this rate of deformation is less than that
corresponding to the critical value Ca⁎. When the calculations show
that drop deformations becomes continued unlimitedly, which means
Fig. 19. Correlation of theoretical predictions for the Ca⁎ (λ) dependence for laminar
simple shear and experimental data (points). (From [88], Fig. 14b, with kind permission
of Springer Science + Business media).



Fig. 21. Dependence of the critical shear rate corresponding to droplet break-up on
droplet size in emulsions of different concentrations of the dispersed phase. (From [78],
Fig. 5, with kind permission of Springer Science + Business media).
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that the drop brakes, then the corresponding Ca is larger than Ca⁎. As
one can see in Fig. 19, the theoretical predictions are in full agreement
with experimental data in a wide range of λ values spanning over six
orders of magnitude [88].

The critical conditions for droplet break-up change when the con-
tinuousmedium is not purely viscous but visco-elastic. Indeed, surface
stresses at the interface can vary and are a function of the Reynolds
number and simultaneously of the Weissenberg number (the ratio of
characteristic times of outer action and inner relaxation). Numerical
modelling demonstrated that the critical values of the Capillary num-
ber really increase with increasing Weissenberg number (enhance-
ment of elasticity of a continuous medium) [94].

The above discussed theoretical results and experimental data
referred to a single dropor the limiting case of dilute dispersionswhere
any dynamics or interactions can be neglected. However, the largest
interest from a theoretical and applied point of view is connected with
the break-up or coalescence of drops in concentrated emulsions, but
the use of any approach for dilute emulsions and experimental data in
Ca⁎ vs. λ coordinates do no allow to draw a general picture [78]. The
critical values Ca⁎were found to lie below the lowest limit (cf. Fig. 19)
and are strongly concentration dependent. A generalization of experi-
mental results can still be reached bymodifying the definitions for Ca⁎
and λ, substituting the viscosity of the continuous medium η0 by
the viscosity of the emulsion ηem. The expression for such modified
(“mean field”) Capillary number was given above by Eq. (27), and the
corresponding modified viscosity ratio λm is written as

λm =
ηdr
ηem

: ð33Þ

The results of experimental studies discussed in terms of the func-
tion Cam⁎(λm) are shown in Fig. 20 for emulsions in a wide concen-
tration range (up to φ=0.7). As one can see, this approach allows us
to obtain the generalized characteristics of drop break-up in a laminar
shear flow of emulsions at different concentrations.

The influence of concentration is especially evident from Fig. 21,
where the critical shear rate γ̇⁎ (for the condition of break-up) is pre-
sented as a function of the reciprocal droplet radius for emulsions of
different concentrations. The higher the concentration, the lower is the
shear rate required for the break of a drop. It is evident that this result is
subjected to the increase of stresses in the transition to higher concen-
trations of an emulsion.

The relationship γ⁎̇ ∝ R−1 is a consequence of the definition of the
critical Capillary number, but the coefficient in this dependence is dif-
ferent varyingwith the concentration (and consequently, with the vis-
cosity) of the emulsion.
Fig. 20. Condition of drop break-up for different concentrations (φ varied from 0 to 0.7).
Experiments were performed for a model emulsion — silicon liquid drops in water.
(From [78], Fig. 7, with kind permission of Springer Science + Business media).
The drop break-up at a given shear rate can continue up to some
limiting size Rlim, because the Capillary number decreases with the
decrease of radius and finally it becomes less that the critical value
Са⁎. This conception is illustrated in Fig. 22. The dependence of Rlim
on the shear rate γ̇ is described by a parabolic law (solid line in Fig. 22)
and the following scaling law becomes valid [95]:

Rlim = C
σ

ηγ̇
: ð34Þ

The factor C appeared to be of the order of 1, and this also reflects
the critical value of the Capillary number.

Droplet break-up in concentrated emulsions (“emulsification”) can
proceed in steady shear aswell as in themode of periodic oscillations if
deformations gobeyond the limit of the lineardomain [96]. In this case,
thedropbreak-up leads to aquitenoticeable growthof the elasticmod-
ulus. This result is in accordance with the dependence of the modulus
on the droplet size, as it was discussed above (see Fig. 13).

It is essential that all theoretical (model) conceptions and experi-
mental results discussed above relate to laminar flows. The transition
to higher velocities and the transition to a turbulent regime of flow
change the situation substantially andmake the picture of drop break-
up in emulsionsmore complicated. Thebasic problemconsists inmethods
of a quantitative characterization of turbulent flows by themselves, i.e.
large fluctuations of local velocities and stresses inherent to turbulent
flows.
Fig. 22. Dependence of drop size decrease as result of laminar shearing of an emulsion
on shear rate. Experimental data were obtained for a model system: silicon liquid drops
in water (φ=0.7). A solid line corresponds to the scaling law, Eq. (34). (According to
Mason [95], Fig. 3).



Fig. 24. Correlation between experimental and predicted values of the maximum drop
size formed in the TV regime. Experimental points were obtained for a large number of
different emulsions. (From [99], Fig. 7, with kind permission of Elsevier B.V.).
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It is generally accepted that there are two different modes of
turbulent flow— “inertial turbulent” (TI) and “viscous turbulent” (TV)
regimes. The difference between them is related to the ratio of char-
acteristic sizes of a liquid droplet and a turbulent vortex [97,98]. The
minimal droplet size in the TI regime depends on the ratio of dynamic
pressure fluctuation (break-up of a droplet) and surface tension, while
the break-up of drops in the TV regime occurs under shear stresses
acting via the continuous medium.

I was shown in [99] that the maximum size of a stable drop in the
TI regime dTI,max can be expressed in the following manner:

dTI;max = A1 e−2=5σ3=5ρ−3 = 5
c

� �
= A1dk ð35Þ

where А1 is the front-factor of the order of 1, ε is the intensity of
energy dissipation characterizing the dynamic situation in a flow, and
ρс is the density of the continuous phase. The term in brackets desig-
nated as dk is a characteristic length.

Themaximal size of a drop in the TV regime, dTV,max, is determined
by the viscous shear stresses:

dTV;max = A2 e−1=2η−1 = 2
0 ρ−1 = 2

c σ
� �

ð36Þ

where the constant А2≈4, η0 is again the viscosity of the continuous
medium.

These formulas are valid for low-viscosity drops. A generalization
for emulsions, in which drops are dispersed in a phase of arbitrary
viscosity, interrelates parameters of the emulsion and flow conditions
[100–105]:

dTV;max = A3 1 + A4

ηdre
1=3d1=3TV;max

σ

 !3=5

dk ð37Þ

where А3 and А4 are constants, ηdr is the viscosity of the liquid dis-
persed drops. Note, dk is again the characteristic length, which enters
in Eq. (35). The results of experimental investigations confirm that the
dependence of the droplet size on determining factors for the TI re-
gime are well described by Eq. (35) with a coefficient А1=0.86 (see
Fig. 23). The comparison of theoretical predictions and experimen-
tal data for the TV regime provides also quite good results (Fig. 24).
In this case, the coefficients in Eq. (37) are as follows: А3=0.86 and
А4=0.37.

The theory of droplet break-up is typically focused on the final
equilibrium state of droplets, but also the kinetics of the break-up pro-
cess is of interest. This kinetics in a turbulent flow regime was con-
Fig. 23. Dependence of the maximum drop diameter on the term entering Eq. (35) for
the TI flow regime. The emulsion was formed by hexadecane drops in water. The slope
of the straight line is at А2=0.86. Different labels correspond to various surfactants
used as stabilizers. (From [99], Fig. 5, with kind permission of Elsevier B.V.).
sidered in [106], where a kinetic scheme and an experimental method
for the determination of the kinetic constant were proposed. The
kinetics of drop break-up can be described by means of a single addi-
tional constant kbr, depending on the drop size d:

kdr dð Þ = B1
e1=3

d2=3
exp −B2

dk
d

� �5=3
1 + B3

ηdre
1=3d1=3

σ

 !" #
ð38Þ

where В1, В2, В3 are fitting coefficients. The experiments carried out
with a large number of objects confirmed the validity of the proposed
calculation scheme and allowed the authors to find the values of con-
stants in Eq. (38). However, it is worth mentioning that break-up of
drops in the flow of emulsions leads to the formation of a large num-
ber of droplets of different sizes. Therefore, these droplets should be
characterized by their maximum size as well as by the size distribu-
tion and the average size. It seemsmost reasonable that the size distri-
bution is described by the Gaussian distribution function. However,
direct measurements showed that the real droplet size distributions
can be very different and depend on the viscosity of the droplets [107].

6. Blends of polymer melts as emulsions

Polymer blends are very important technologicalmaterials ofmod-
ern industry because the addition of a polymer to another can create a
material of principally different properties. The classical example of
introducing rubber particles into a PS matrix gave a completely new
material — high impact PS with quite different application properties
in comparison with its components.

Many original papers, reviews, books and technical reports are
devoted to the analysis of various aspects of polymer composition and
their applications. Only two examples are referred to [108,109]. The
present discussion touches a rather narrow problem in this vast field
of problems related to polymer blends and represents a possibility to
treat polymer blends as emulsions where one polymer is dispersed in
the other. Note, only blends of polymeric melts (i.e. liquids) will be
considered here.

Two different polymers are not compatible with each other in a
noticeable concentration range, as a general rule. This means that they
do not form solutions even if their monomers and low-molecular-
weight analogues do. Rare exceptions are such pairs as PET/PBT, PS/
poly(phenylene oxide), PMMA/ poly(vinyledene fluorine). In practi-
cally all other cases two polymers in a blend create emulsions.

The transition from a compatible system to an emulsion as the
result of phase separation and coalescence of droplets leads to tre-
mendous changes in the rheological (and in particular visco-elastic)



Fig. 26. Evolution of the blend structure as a function of concentrations of both com-
ponents in transition from one boundary situation (“black” droplets are dispersed in a
“white” material) to the opposite case (“white” droplets are dispersed in a “black”
matrix) via the transient state of uncertain morphology of both phases.
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properties of the material. Fig. 25 illustrates this effect on the basis
of relaxation spectra of a blend PS/poly(vinylmethyl ester). Only one
sharp peak (a relaxation maximum) is observed at 120 °C. This peak
corresponds to the PS phase, inwhich the second component is solved.
The components become incompatible at 150 °C and it is reflected
by two independent peaks [110]. The existence of a single or of two
relaxation maxima is a direct evidence of the phase state in a system
(blend).

The general question can be put: are polymer blends analogous by
their structure and properties to emulsions of low-molecular-weight
components? A formal analogue between these two types of systems
undoubtedly exists. Moreover, as it will be shown below, many prin-
ciple features of emulsions are quite acceptable in the discussion of
polymer blends. However, polymer blends have some principle pecu-
liarities, which require their treatment as a rather special class of
emulsions. Several significant points should be stressed here.

Firstly, polymer blends do not stay in the molten state for a long
time in real technological conditions but they are subjected to large
deformations. Viscosities of both components in a polymer blend are
very high in comparisonwith regular emulsions. Therefore, a dispersed
phase rather rarely separates off in form of spherical particles. A dis-
persed phase usually generates prolonged agglomerates, which can be
sometimes self-organized in a continuous phase, so that inmany cases
it is impossible to say, which component represents the dispersed
particles and which one the continuous phase.

The structure of polymer blends can be presented by the following
simple picture in Fig. 26. One can see that a dispersed phase exists in
form of (almost) spherical droplets in narrow concentration ranges,
while both phases create domains of uncertain shape in the broad
central range of concentrations.

Secondly, polymeric materials are visco-elastic media and their
bulk visco-elasticity has the same importance as the elasticity of inter-
facial layers. Thirdly, polymers are not soluble in each other. But rela-
tively short parts of the polymeric chains (“segments”) aremobile and
similar to the diffusivity of low-molecular-weight analogues. There-
fore these segments can diffuse into each other forming an inter-
mediate transient layer with continuous (but not sharp) changes in
concentration of both components [111,112]. Such interfacial layer (in
which segmental solubility of the components is realized) has prop-
erties different from those of the two pure phases, and this effect
should be taken into account in the analysis of the behaviour of poly-
mer blends. And finally, surfactants are rather rarely introduced into
polymer blends, although the compatibility of two polymers is artifi-
cially improved by adding special compounds— compatibilizers, which
give an additional and significant input into the properties of polymer
blends.
Fig. 25. Normalized relaxation spectra θH(θ)compatible (at 120 °С — filled circles) and
incompatible (at 150 °С — open circles) mixtures of two polymers. (From [110], Fig. 14,
with kind permission of Springer Science + Business media).
Block-copolymers consisting of components of a blend are often
used as compatibilizers. The basic idea of this approach is that each
block in a copolymer is compatible with one of the components in
the blend. So, one can expect that this method provides a continuous
transition from one phase to the other which cannot be reached for
low-molecular-weight liquids.

Surely, the general conceptions concerning drop deformations in a
flow as well as ideas about the concentration dependence of viscosity
can be applied to polymer blends. However, an independent problem
is the estimation of the visco-elastic properties of these blends, bearing
in mind that a polymer blend should be treated as a three components
systemwith special properties of the interfacial layer.

The viscosity of a blend consisting of incompatible polymers, e.g.
PIB/PDMS, can be quite satisfactorily described by Eq. (13) [113]. This
blend is a typical polymeric emulsion: the lower concentrated compo-
nent exists the form of spherical droplets and phase inversion takes
place at the concentration ratio 50:50. However, even when only a
minor amount of a compatibilizer (0.5% of a PIB-PDMS block polymer)
is added to this blend, this modification provides a much better com-
patibility of the components and, as a result, the viscosity sharply in-
creases, and also the relaxation time, complex elastic modulus and
elasticity of the blend increase. Besides, the addition of a compatibi-
lizer prevents coalescence of the droplets. A general explanation of
these effects is based on the concept that a compatibilizer is com-
pletely adsorbed onto the surface of the dispersed droplets providing
them a solid-like character. Such systems behave like a liquid con-
taining a quasi-solid filler, whichmeans that the viscosity of the liquid
matrix with solid particles can be described by the equations pro-
posed for typical suspensions. In other words, the situation here is
quite similar to the above described emulsions of low-molecular-
weight liquids stabilized with typical surfactant (see Section 3).

Let us assume that the visco-elastic properties of components of a
blend are described by the frequency dependencies of the complex
modulus, G1′(ω) and G2′(ω) of the two components. Then the question
arises what relaxation properties of a blend are? The closest answer is
the additive supposition of the inputs of both components. In this
approach, the frequency dependence of the elastic modulus of a blend
Gbl(ω) can be written as

GVbl ωð Þ = w1GV1 ωð Þ + w2GV2 ωð Þ ð39Þ

where w1 and w2 are the weights of both components in the blend.
However, numerous experimental studies showed that this sim-

plest supposition is not adequate. This is easily grasped because the
equation does not take into consideration the existence of the tran-
sient layer, which undoubtedly gives its input into visco-elastic prop-
erties of a blend. One of the more successful attempts to describe the
visco-elastic properties of polymer blends is the Yemura–Takayanagi
equation [114], which is related to standard conceptions of viscosity of
emulsion of low-molecular-weight liquids:

η⁎ы ωð Þ = η⁎0
3η⁎0 + 2η⁎dr − 3 η⁎0 − η⁎dr

� �
u

3η⁎0 + 2η⁎dr + 2 η⁎dr − η⁎0
� �

u
ð40Þ



Fig. 27. Frequency dependencies of the storage modulus for a PIB/PDMS blend (points).
Open points correspond to the state of the system after shearing at 480 Pa, and filled
points reflect data after shearing at 30 Pa. Pairs of curves were obtained for blends with
different contents of a compatibilizer (shown at the curves) and are shifted upwards by
one order of magnitude to avoid superposition of points. (From [113], Fig. 3, with kind
permission of Springer Science + Business media).
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where ηbl⁎ is the dynamic viscosity of the blend, η0⁎ is the dynamic
viscosity of the polymer forming the continuous phase, ηdr⁎ is the
dynamic viscosity of the polymer representing the droplets with φ
as its concentration. Another version of their approach is a relation-
ships for the frequency dependence of the dynamic modulus taking
into account volume compressibility of a blend via the Poisson coef-
ficient. However, these calculations were proposed not for melts but
for mixtures of solid polymers where it is incorrect to neglect their
compressibility.

Modern conceptions in understanding rheological properties of
polymer blends are based on the fundamental publication of Palierne
[80], which has been already cited in the previous section in discuss-
ing the drop deformation in a liquid flow. The same approach can be
applied to polymeric visco-elastic emulsion if one component forms
drops in a continuousmatrix of the other. These drops are transformed
to ellipsoids and this leads to a change in deformation of a drop, in the
intermediate layer as well as in the surrounding medium.

As was discussed above in Section 5, a rigorous theory of drop de-
formation in the linear domain of visco-elasticity was proposed in
[80]. This theory gives the following expression for the complex elastic
modulus of a blend Gbl⁎(ω) of two visco-elastic liquids as result of the
sphere-to-ellipsoid transformation:

Gbl
⁎ = G0

⁎1 + 3uH ω;Rð Þ
1− 2uH ω;Rð Þ ð41Þ

where the function H(ω,R) in Eq. (41) is given by

H =
4 σ

R 2G⁎
0 ωð Þ + 5G⁎

dr ωð Þ
h i

+ G⁎
dr ωð Þ− G⁎

0 ωð Þ
h i

16G⁎
0 ωð Þ + 19G⁎

dr ωð Þ
h i

40 σ
R G⁎

0 ωð Þ + G⁎
dr ωð Þ
 �

+ 2G⁎
dr ωð Þ + 3G⁎

0 ωð Þ
 �
16G⁎

0 ωð Þ + 19G⁎
dr ωð Þ
 � :
ð42Þ

Whenwe simplify the model by assuming only a single-relaxation
time (as discussed in Section 3, Eq. (18)), the following formulas for
the components of the complex modulus are obtained

GVωð Þ = 3Kf 22 ωθð Þ2
3 f 21 + ωθð Þ2
 � ; ð43aÞ

GW ωð Þ = 3Kf 22 ωθð Þ
3 f 21 + ωθð Þ2
 � ð43bÞ

where the parameters K, f1 and f2, and the relaxation time θ were
defined further above. This approach really gives satisfactory results
for the PIB/PDMS blends [115], but attention has to be paid to the fact
that this study was devoted to low-molecular-weight analogues of
these polymers, which behave as Newtonian liquids. This is possibly
the reason why the simple single-relaxation-time approximation was
satisfactory.

A more complicated case of the blend of the same polymer pair
(PIB/PDMS) with an added compatibilizer [116] demonstrated the
diversion between experimental values of the dynamic modulus Gexp′

and the values Gp′ predicted by the Palierne model, which was ex-
plained by the input of visco-elasticity of the interfacial layer, and
formulated by the following equation

GVexp = GVp + GVint er ð44Þ

where the parameter Gint er′ was just introduced as responsible for
the properties of the intermediate layer. In this equation, the visco-
elasticity of a blend is treated as the additive sum of elasticity contri-
butions of both polymeric components and the interfacial layer [113].
Fig. 27 illustrates the quality of theoretical predictions by the Palierne
model and demonstrates that the theory proposes rather good pre-
dictions of the frequency dependencies of the storage modulus. We
can also see from this figure, that the prehistory of deformation
usually does not influence the rheological properties of emulsions of
low-molecular-weight liquids, but it does for polymeric blend. This
phenomenon is completely related to themorphology of the dispersed
droplets, which is reached in previous deformations and stored due to
the high viscosity of the continuous polymeric phase.

The applicability ofmodels for deformable drops of polymer blends
requires a special analysis from case to case in order to find out if each
polymer is characterized by its own relaxation spectrum. The gener-
alization of Palierne's model allows obtaining a complete equation
for the complex dynamic modulus [116]. This analysis additionally
includes the mechanism of visco-elastic relaxation of the interfacial
layer and also the possibility of an arbitrary size distribution of drops
described by some function υ(R). All in all, this represents a com-
plicated and closed analysis of the problem, leading to the basic final
equation for the frequency dependence of the complex dynamic mod-
ulus of the blend Gbl⁎(ω) in the following form:

Gbl
⁎ ωð Þ = G0

⁎
1 + 3

R∞
0

E ω;Rð Þ
D ω;Rð Þ m Rð ÞdR

1− 2
R∞
0

E ω;Rð Þ
D ω;Rð Þ m Rð ÞdR

ð45Þ

where the functions E(ω,R) и D(ω,R), though too cumbersome to be
reproduced here, contain the visco-elastic characteristics of all com-
ponents of a system: dynamic moduli of the continuous phase G0⁎(ω)
and dispersed drops Gdr⁎ (ω), as well as a function presenting the visco-
elastic properties of the interfacial layer, and a function describing the
droplet size distribution υ(R).

The analysis by this complete model of experimental data showed
that the visco-elastic properties of the interfacial layer are quite ade-
quately presented by a single-relaxation time assuming a Maxwell
model. Moreover, it appeared that at least in the first approximation,
the simplest single-relaxation-time model satisfactory describes the
visco-elastic properties of the components of a blend, the values of re-
laxation times being different for the continuous phase and dispersed
drops. Also, it was proven that the whole size distribution υ(R) could
be substituted for a single volume-averaged radius of drops. This rather
simplified model quite adequately describes the experimental depen-
dencies Gbl⁎ (ω) for PS/PMMA blends in a wide frequency range. The
parameters of the model were chosen by a fitting method of the ex-
perimental data by the calculated curves. Surface tensionwas also one
of the free parameters in the procedure of optimization.

The calculations confirm that the rheological properties of the
interfacial layer are practically purely elastic (with low viscous losses).



Fig. 29. Dependence of the elastic modulus of the interface layer (2D structure) on the
content of the compatibilizer. The abscissa presents the number N of compatibilizer
molecules at 1 cm2 of the surface area of dispersed particles. Numbers at the curves de-
signate the concentration of a compatibilizer in the blend. Circles mark results obtained
after preliminary shear at a shear rate of 4.8 s− up to the deformation of 3000 units.
Squares reflect results obtained after shearing at 1.2 s− till the steady (stationary) state
was reached. (From [117], Fig. 8,with kind permission of the Springer Science+Business
media).
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If we treat an emulsion as a system containingmonodisperse particles,
Eq. (45) can be written in a simpler form:

G⁎
bl = G⁎

0

1 + 3u E ω;Rð Þ
D ω;Rð Þ

1− 2u E ω;Rð Þ
D ω;Rð Þ

: ð46Þ

This equation for the complex dynamic modulus was used in [117],
and it was shown that the visco-elastic properties of the interface have
a major effect onto the properties of a blend in the real case of two in-
compatible polymers. The comparison of calculations with experi-
mental data, according to the conclusions of [117], is presented in
Fig. 28.

It is also worth mentioning that the effect of the prehistory of de-
formation on rheological properties of the blendwas observed in [117]
and direct structural studies confirmed that this effect was related to
the morphology of the blend.

The data presented in Fig. 28 clearly demonstrate that neglect-
ing the effect of the interfacial layer (dotted lines) leads to an under-
estimating of the real values of storage modulus, which is especially
evident in the low frequency domain. Fitting of the quantitative pre-
dictions of the model of deformable ellipsoids to experimental data
showed good agreement in a wide frequency range only when taking
into consideration the surface modulus of elasticity of the interfacial
layer, Gs. Moreover, there is a direct correlation between the concen-
tration of a diblock copolymer of both components of the blend as
compatibilizer and the elastic modulus of the interfacial layer. Fig. 29
illustrates this correlation with the argument being the coverage of
dispersed droplets by the compatibilizer. This figure also demonstrates
the role of shear deformations in structure formation: with increasing
the time of deformation (up to the limit of steady values) the coverage
of the dispersed droplets increases and, consequently, the modulus of
interfacial elasticity become higher. Note, that the Gs values are related
to the length unit but not to the area and their dimension is N/m.

The above discussed experimental data as well as experimental
data of other authors (see e.g. [118]) and their comparison with theo-
retical predictions prove that the rheological properties of the inter-
facial layer should be necessarily taken into consideration in addition
to the elasticity directly relayed to drop deformation, the latter being
treated in many publications as the only mechanism governing the
properties of emulsions. This approach opens the possibility to give
quantitative estimations of the impact of a compatibilizer. This ap-
proach allowed not only to describe correctly the visco-elasticity of
polymeric blends but also to predict the probability of drop coales-
cence in a shear field too.

It is interesting to note that themethod of compatibilizing does not
strongly influence the rheological properties of blends. An example
Fig. 28. Viscoelastic properties of PI/PDMS blends with different contents of a
compatibilizer (block-copolymer of the components of the blend). Each subsequent
curve is shifted upward by one order of magnitude to avoid superposition of points.
Solid lines correspond to the model taking into account an interface layer, while dotted
lines were calculated without this factor. (From [117], Fig. 5, with kind permission of
Springer Science + Business media).
leading to this conclusion is the comparison of the rheological prop-
erties of the pair PP/PS where compatibilizing was reached either by a
chemical method (introduction of compounds with active chemical
groups interacting with both components of the blend) or by simple
physical mixing [119].

As a result of this discussion, we can conclude that the theoretical
models describing rheological properties of emulsions are valid for
both emulsions of low-molecular-weight liquids and for polymeric
blends. However two special points for polymeric systems have to
be emphasized, firstly, the existence of a multi-component relaxation
spectrum, and secondly, the strong impact of the pre-history of defor-
mations. The latter effect is evidently explained by the structure and
morphology relaxation due to the high viscosity of themedium.More-
over, the theoretical models have been compared with experimental
data for blends, inwhich themorphologyof the dispersed dropletswas
close to the spherical or ellipsoidal shape. Theoretical models work
well just in these cases. It is difficult to suppose that these models
would give satisfactory results when a dispersed phase forms a pro-
longed domains of uncertain shape (as in the central part of Fig. 26) or
moreover if both components form continuous phases. These situa-
tions are unlikely to be described by the above discussed models. A lot
of photos of these uncertain morphological forms existing in polymer
blends can be found in the scientific literature. The possibility of a
quantitative description of rheological properties of such systems
looks rather questionable.

Many publications devoted to polymeric blends contain parallel
examination of their morphology and rheological properties. This re-
presents a solid ground for correlations between the structural and
mechanical properties of polymer blends (emulsions) and allows an
extension to transient modes of deformation. An instructive example
of such investigations is the study of drop shape transformations in a
PP/PS blend along the deformation curve of constant shear rate mode
including a pre-stationary domainwith shear stresses passing through
a maximum, as well as a periodic multi-step deformation mode with
alternating shear and rest [120].

All these experimental studies clearly demonstrate that the shape
of disperseddrops continuouslychange and are transformed intofiber-
like structure of the self-reinforcing type at high rates of deformation
[121]. In such cases, the viscosity of a blend can be calculated by a
model proposed in [122]:

η = η0 1 +
1
λ
−1

� �
u

� 	−1
: ð47Þ
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This equation was applied to polymer blends in the range of high
shear rates, though for the given Eq. (46) underestimates the viscosity
values in comparison with real values [123]. It appeared that this case
was quite well described by the simple rule of logarithmic additivity
for the viscosity of the blend ηbl:

lgηbl = u1 lgη1 + u2 lgη2 ð48Þ

where φ1, η1 and φ2, η2 are volume shares and viscosities of both co-
existing phases, respectively.

Finally, there is a special case of rheology of polymer blends in shear
when the dispersed phase is a liquid-crystalline (LC) polymer. Systems
of this kind are of great technical interest, because by varying the con-
tent of a LC polymer it appears possible to construct materials with
particular characteristics, such as high strength and perspective optical
properties. Such materials and fields of applications are described for
example in [124,125].

Naturally the anisotropy of LC liquids (with their sharp tendency
to orientation) leads to a non-standard behaviour of drops with the
formation of original structures and polydomain morphology [126–
128]. One can also suppose that the rheological properties of such
systemswould be quite different from those of other blends. Up to date
numerous studies devoted to investigations of the rheology of LC and
regular thermoplastic polymer blends are known due to their techno-
logical importance. The main role of a LC polymeric additive relates to
the remarkable decrease of viscosity of a blend [126,127,129]. Of course
this effect is connected with the fibrillization of the LC component,
which leads to a domination of the orientation of macromolecules of
a thermoplastic polymer in a flow and consequently to a decreased
effect of intermolecular entanglements [130–132].

In [133,134] it was shown that the application of emulsion models
proposed for blends of ordinary thermoplastic polymers to blends con-
taining a LC component is possible if the characteristic size of the LC
domains is much less than the size of dispersed drops. In this situation,
one can neglect the structure peculiarities of the dispersed phase. Ap-
parently, the approach of Ericksen based on the conception of rheology
of anisotropic media is better founded for such systems [135].

The results of the dynamicmodulus calculations based on Palierne's
model and the model taking the anisotropy of the LC domains into ac-
count are presented in Fig. 30 in comparison with experimental data
for a blend, inwhich a PCmelt is thematrix and a LC polymer forms the
dispersed phase. As one can see the correction related to peculiarities
of the rheological properties of the LC polymer is not very high though
its introduction allows a better fitting of the experimental data. This
figure is also interesting as striking evidence for much higher values of
Fig. 30. Comparison of experimental data (filled symbols) with the results of calcula-
tions for the frequency dependencies of viscoelastic properties of the PC/LC polymer
blend according to the Palierne model (dotted line) and the model taking into account
the anisotropy of a LC polymer (solid line). The frequency dependencies of the dynamic
modulus for both components (PC and LC) of the blend are also shown (open symbols).
(From [135], Fig. 4, with kind permission of Springer Science + Business media).
the elastic modulus of a blend in comparison with the moduli of both
components in a low-frequency domain. The effect of the LC compo-
nent is pronounced just in this domain while the properties of the
thermoplastic matrix dominate at high frequencies.

The fact that the difference between the calculations for isotropic
and anisotropic models of dispersed drops is not very large and pos-
sibly caused by the low deformation. At the same time, one can expect
that for large deformations, and in particularly in flow, the impact of
anisotropy of a LC polymer on the rheological properties of a blend
would be much stronger. Thus, it is reasonable to think that the gen-
eral quantitative understanding of the rheology of such polymeric
emulsions is still pending.

Studies of uni-axial extensions of molten polymer blends deserve
special emphasis. As a rule, the extension mode in such studies is well
controlled and accompaniedbyobservations of the structure. Themain
fact found is the effect of the non-affine deformation of dispersed
drops. The relationship between the draw ratio of a blend as a whole
and the deformation of separate drops depends on the viscosity ratio of
the components in the blend [136–139].

A possibility to estimate the effect of interfacial tension in uni-axial
extensionofmulti-component polymerswasmentioned in [140]where
the behaviour of a multi-layered (up to 100) parallel array of different
polymers on a planewas studied. It becomes evident that the rheolog-
ical properties upon extension are definitely influenced by the exis-
tence of interfacial interactions. Later, this approachwas developed for
mixtures of incompatible polymers [141–145]. The process of exten-
sion was treated in the framework of purely mechanical arguments,
noting that mixing of polymers of even close architecture (linear PE
and PE with a small number of long chain branchings) leads to quite
perceptible changes in the rheological behaviour of a blend [146]. It is
interesting to note that the analysis of elastic recoveryof blend samples
after extension is based on the conception of surface tension as the
driving force in the transition from the extended morphology to
spherical drops [141–144]. The results of the rheological analysis allow
the estimation of the interfacial tension.

Like in shear, also in extensional deformation emulsions including
the LC phase demonstrate unusual rheological effects in comparison
with blends of regular thermoplastic polymers. The LC polymer plays
primarily the role of a plasticizer decreasing the viscosity of a blend.
The effect of fibrillization of a LC component was pronounced in the
extension of such blend (demonstrated for PP/LC in [147]) and this is
favourable for mechanical properties of the final product. The intro-
duction of a compatibilizer promotes the involvement of a thermo-
plastic matrix in the process of orientation and it leads to the increase
of the rigidity of a blend in extension flows.

It is evident that blends of ordinary thermoplastic polymers (e.g.
PET or PP) with a LC component demonstrate non-Newtonian prop-
erties in elongation flow. The character of a non-linear behaviourmight
be different: depending on the elongation ratio and/or deformation
rate, viscosity as well as rigidity of a blend can increase or decrease
[132,148]. It is unlikely that at present we can estimate general quan-
titative regularities of the behaviour of emulsions of this type— blends
of flexible-chain and LC polymers.

In conclusion of this section, it is worth to note that the flow of
emulsions in some special geometries, precisely where the space for
flow is commensurable with the size of the emulsion drops in (i.e.
when flow takes place in so named — micro-confined conditions) the
effect of spontaneous formation of regular (dissipative) structures
characteristic for unsteady state of a systemwas observed [149]. Surely
the properties of such structures should be very unusual in comparison
with the rheological properties of regular emulsions.

7. The role of surfactants: stability and aging

As has been seen from the discussions of Sections 2–6, surfactants
and/or compatibilizers play an important, if not a decisive role in the
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rheological behaviour of emulsions at any concentration. Aggregation
stability of droplets is determined mainly by the nature and con-
centration of a surfactant in the system creating and stabilizing the
emulsion. Thermodynamically, a surfactant is adsorbed at internal
interfaces and decreases the interfacial tension. In some cases, it can
result even in the formation of equilibrium colloid systems. Besides,
the impact of stabilizing internal surfactant layers consists inproviding
repulsive forces (energetic barrier) between droplets. The increase of
the surfactant concentration up to a certain limit is favourable for the
stability of an emulsion providing constancy of its properties with
time. Therefore it is reasonable to discuss principle regularities of the
influence of a surfactant (interfacial adsorption layers) on the rheology
of emulsions.

The influence of concentration of a dispersed phase at the same
concentration of a surfactant is shown in Fig. 31. One can see that the
increasing polymer concentration results in an appreciable increase in
viscosity at low shear rates.

The increased emulsions viscosity caused by the low-molecular-
weight surfactant stabilizer immobilizes (loss of mobility) the contin-
uous phase due to the formation of micelles at high surfactant con-
centration [151]. If high-molecular-weight surfactants (e.g. proteins)
are used, the increase in viscosity can be explained by the adsorption
of polymer molecules and the formation of structurized interfacial
layers [45,47].

Rheological properties of adsorbed layers of a surfactant definitely
influence the rheology of an emulsion as a whole. To our regret, there
are no adequate methods for the study of adsorbed layers just inside
emulsions. Therefore the standard objects for investigations aremodel
systems at stationary flat hydrocarbon/water interfaces [12,152,153].

The following physical phenomena are substantial for understand-
ing the properties of an adsorbed layer on the droplet surface in emul-
sions. Firstly, as a rule, surfactants adsorb at droplet surfaces from the
continuous phase (according to the Bancroft rule, the phase in which
an emulsifier is more soluble constitutes the continuous phase though
some exceptions can exist). Therefore a system as a whole appears
non-stationary and the kinetics of adsorption should be taken into
consideration. Secondly, the surfactant layer should not be treated as
solid-like. This layer contactswith a solution and stores somemobility.
As a result, the surfactant concentration is changing in flow and some
kind of surface flow down the droplet rear part happens. Therefore the
surfactant concentration is inhomogeneously distributed along the
droplet surface.

The analysis of the simplest model for a single drop in a dilute
emulsion stabilized by a surfactant shows [154] that there are three
dimensionless parameters playing a key role in the process of flow. The
first one is the viscosity ratio in both phases λ=ηdr/η0. The second one is
Fig. 31. Flow curves of aqueous emulsions of acidic microbial polysaccharide for two
concentrationsof thedispersedphase (shownat the curves). Surfactant— siliconoligomer.
(From [150], Fig. 1a, with kind permission of Springer Science + Business media).
the ratio of surface (2D) viscosity expressed as a sum ηsurf=(2ηs+3ηd)
(like in theOldroydEq. (10)) to volumeviscosity of the continuous phase.
This ratio can be called the Boussinesq number Bo = ηsurf

Rη0
, where R is the

droplet radius. Andfinally, the third factor takes into account the elasticity
of the interfacial layer and diffusion of a surfactant expressed via the ratio
Gi=ReGs/2η0Deff, where EGs = dσ

d ln S

� �
Г is the surface elasticity modulus

(the Gibbs effect), S is the area of the surfactant interfacial layer (area of
the droplet surface), Г is adsorption, and Deff is the apparent diffusion
coefficient of the surfactant.

A final expression for the apparent viscosity of an emulsion ηr
obtained with the assumption of a visco-elastic interfacial layer and
diffusional adsorption dynamics reads [154]:

ηr
η0

− 1 = 1 +
3
2
beN

� �
u ð49Þ

where bεN is the mobility parameter of the interfacial layer averaged
over all droplets, which depends on all above listed dimensionless fac-
tors. It can be expressed for every droplet in the following way

e =
λ + 2

5 Gi + Boð Þ
1 + λ + 2

5 Gi + Boð Þ : ð50Þ

The introduction of this parameter allows estimating the relative
impact of various factors on the viscosity of dilute emulsions stabilized
by a surfactant. Eq. (49) with the given expression for ε transforms
into the Oldroyd equation at Gi→0 (EGs→0), i.e. when the interfacial
elasticity is negligible.

A quantitative estimation show that the ratio between the viscous
and elastic properties of an interfacial layer for real systems (ionic and
non-ionic surfactants and proteins) is such that its elasticity should
not be neglected. This is true especially for interfacial layers of insolu-
ble surfactants where the apparent coefficient of diffusion is low and
consequently the factor G is high. Just this reason explains the solid-
like character of liquid drops covered bya surfactant andmoving through
a liquid continuousmedium at low velocities (lowReynolds numbers),
as was discussed above in Sections 1 and 2.

The rheology of interfacial layers becomes important with increas-
ing droplet size [155]. Large drops deform in a shearfield (see Section 5)
and the viscosity of the corresponding emulsion becomes dependent
on the rheological properties of the interfacial film. With respect to
concentrated emulsions, the deformation of droplets can happen due
to their dense packing. A solid-like behaviour (elasticity) of highly con-
centrated emulsions is the results of the counteraction of adsorbed
surfactant layers against the increase of the equilibrium interfacial
tension upon the increase of the surface are of already compressed
droplets in shear [42]. Both, shear and dilational elasticity can give
their input into the overall elasticity of an emulsion, as was demon-
strated experimentally for proteins [47].

However, the discussion of rheological properties of different sur-
factants and the influence of various factors on these properties in-
cluding the intermolecular interaction in surface layers is a separate
problem going beyond the aim of this overview. Nevertheless, it is
worth mentioning that there is undoubtedly an interrelation between
the rheology of interfacial surfactant layers and the stability of emul-
sionsbecause the latter is determinedmainly by theelasticity (thermo-
dynamic factor) and viscosity (kinetic factor) in droplet interactions
(see, e.g. [156–158]).

The chemical structure of a surfactant is of primary practical inter-
est. First of all, the efficiencyof a surfactant depends on the hydrophilic–
lipophilic balance. For example, if an amphiphilic polymer (for example
a modified hydroxy ethyl cellulose) is used as surfactant, then emul-
sions with different rheological properties – from a low viscous liquid
up to a gel-like product – can be obtained depending on the ratio of
hydrophilic and hydrophobic substituted groups [159,160]. Proteins as
emulsifiers are especially important for applications in food industry.



Fig. 32. Flow curves of aqueous emulsions of silicon-organic oligomer with addition of
1 wt.% nano-particles of silica. φ=0.6. (From [172], Fig. 2, with kind permission of
Elsevier B.V.).
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Many papers have been devoted to emulsions stabilized by caseinates
(Na-caseinate) providing a respective elasticity [46]. The introduc-
tion of inorganic ions (calcium) and low-molecular-weight alcohols
(ethanol) leads to the loss of elasticity and elimination of the non-
Newtonian behaviour of emulsions. Generally speaking, the rheologi-
cal properties are determined by the structure of the adsorption layers
and their tendency to form structures in the continuous phase [161,
162]. Highly concentrated emulsions containing simultaneously pro-
teins and low-molecular surfactants of different natures are of special
interest. Upon the increase of themolar ratio [surfactant]/[protein] the
polymeric stabilizer is substituted by a low-molecular-weight surfac-
tant in the interfacial layer, which results in a sharp drop of the yield
stress, decrease of the viscosity and suppression of the elasticity of
the emulsion system. This effect was demonstrated for bovine serum
albumin substituted by Tween-80 [53,158] and explained by the pos-
sibility of the polymer to form gel-like or even liquid-crystalline-like
structures with strongly expressed elastic properties at the droplet
surfaces.

The existence of such interfacial layers allows us to treat emulsion
as a three-phase system, in which the third phase is for example a
stabilizing protein layer [163]. It is also necessary to mention that the
effect of ionic and non-ionic surfactants is similar upon the increase of
their concentration in protein containing emulsions [164,165]. The
possibilities of modifying the emulsion's rheological behaviour are
greatly diverse due to the nature of surfactants. As an example, the
addition of polysaccharides to caseinates allows us to produce emul-
sions with improved strength and elasticity, reached by the formation
of intermolecular complexes between the components [166].

Emulsions stabilized by highly dispersed solid particles are a
special domain. These particles can be matched by polar and non-
polar liquids as well and because these particles can assemble at the
interface. Effects of such kind are known for a long time as Pickering
emulsions [167]. Emulsions of this type can be formed by different
pairs of liquids. e.g. kerosene/water, decane/water, olive oil/water.
Even 1% of solid particles (ferric oxide or hydroxyde, clay, gypsum,
quartz, carbon black) are enough to influence the emulsion viscosity
noticeably, which increases with the increase of the solid particles'
concentration. The efficiency of a solid stabilizer depends on different
factors, including size and shape of particles, their concentration, wet-
tability and their interaction at the interface [168,169].

In reality, the high stability and rheological properties of Pickering
emulsions are determined by a mutual interaction of solid stabilizers
and low-molecular-weight surfactants. For example, hexane-in-water
emulsions (φ=30%) stabilized by bentonite particles (1–5%) and
hexadecyl trimethyl ammonium bromide (0.01%) demonstrate solid-
like properties manifested by a constant storage modulus in a wide
frequency range, a loss modulus always lower than the storage mod-
ulus over the entire linear domain of the mechanical behaviour [170].

The particle size of a solid stabilizer is important and the rule is:
stabilization is possible only if solid particles are smaller than emul-
sion droplets. Too small particles (with size less than 0.5 nm) compar-
able in dimension with molecules are subjected to Brownian motion
and cannot retain at interfaces and do not form a stabilizing structure
[171].

Structure formations in emulsions can proceed at low solid particle
concentrations if their size is on a nano-meter scale. Then a solid-like
network appears typical for “mild” elastic bodies. An example illus-
trating the role of the size of solid particles is shown in Fig. 32 [172].
The crucial role of the particle size is quite evident: the transition to
smaller particles results in a strongly expressed non-Newtonian flow
characteristic for structurized systems.

In the case under discussion, low-molecular-weight silicon-organic
oligomers (φ=0.6) form emulsions when dispersed in water. Struc-
ture stabilization was provided by silica particles when present in
addition to a standard surfactant. As one can see, the particle size is
crucial: a small decrease in size (from 20 to 10 nm) leads to a radical
change in the rheology of the system. The shape of the flow curve
clearly reflects the formation of a 3D network structure destroyed
upon shear. The results of measured frequency dependence of the
elastic modulus are even more convincing, as the elastic modulus of
the system containing 10 nm particles is independent of frequency
which is characteristic for elastic materials. Thus, there is a direct sim-
ilarity in the behaviour of structurized systems and highly concen-
trated emulsions as described in Section 4.

Very small amounts of fine solid particles represent an effective
method of stabilization for emulsions consisting of polymer pairs. In
this case, the solid particles act as “bridges” joining emulsion droplets,
so that finally the formation of clusters of droplets in the disperse
phase is observed. This effect was demonstrated for the PIB-in-PDMS
system, where fumed silica was used as a solid stabilizer [173].

The addition of carbon nanotubes to aqueous emulsions of amono-
mer (insoluble in water) provides a stable system, which opens the
possibility for the synthesis of nano-porous and electro-conductive
materials [174].

Emulsions are principally thermodynamic non-equilibrium sys-
tems due to a surplus in free surface energy. The instability of emul-
sions influences their rheological behaviour either during deformation
or with time. This means that the evolution of rheological properties
with time can be a simple and convenient experimental method for
controlling the state of an emulsion.

The aging of emulsions leads to changes of their rheological prop-
erties with time. Initially, droplets coagulate; aggregates appear with
liquid of the continuous phase immobilized inside. This process re-
sults in an increase in viscosity at low shear rates. Coalescence leads to
a decrease of the number of droplets per unit volume and this in-
evitably results in an evolution of the rheological properties of the
emulsion due to aging. The behaviour of a model oil-in-water system
stabilized by either Na- or Ca-caseinate is the simplest example [175].
If Ca-caseinate is used as surfactant, the emulsion stability increases
with protein concentration from 0.5 to 2.0%, while droplet coagulation
and a 3D network formation is observed with time if Na-caseinate is
used at the same concentration.

It appears natural, that coagulation and aggregate formation in-
fluences the viscosity of emulsions. A quantitative description of the
influence of aggregate formation on the emulsion viscosity is based
on a generalization of Eqs. (13)–(15) [176]. The variation of the free
parameter φ⁎ plays the key role in this generalization as it reflects the
degree of coagulation. By varying φ⁎, it becomes possible to describe
numerous experimental data. It is also supposed in [176] that the
correct choice of the dependence of φ⁎ on the shear rate allows to
describe the non-Newtonian flow curves of emulsions.

The effect of shear (shear rate or shear stress) does not only
destroy aggregates, but it is also important to note that individual



Fig. 33. Decrease of the dynamic modulus with aging as the result of coalescence of
droplets in an emulsion at different temperatures. (From [48], Fig. 4, with kind permis-
sion of Elsevier B.V.).
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droplets by themselves can be unstable in a hydrodynamic field. This
concern has been discussed in Section 5.

A rather instructive example for the study of emulsion aging is via
measuring the dynamic elastic modulus of highly concentrated emul-
sions with time, as presented in Fig. 33. Here inverse emulsions (water
droplets in a fluorinated oil with non-ionic surfactant as stabilizer)
were studied. As one can see, the decrease rate of themodulus strongly
accelerates at increased temperature. Direct experiments proved that
the mechanism of this process consists in the coalescence of droplets.

The example of an inverse emulsion (water-in-dodecane) stabi-
lized by Span-80 is also quite demonstrative (Fig. 34). The role of the
concentration of the disperse phase is clear. Its increase leads to the
accelerates the decrease of the storage modulus, again explained by
droplet coalescence.

The mechanism of aging described in [178,179] is rather different
because aging is due to a special peculiarity of the content in highly
concentrated inverse emulsions. The droplets of the disperse phase
comprise over-cooled highly concentrated inorganic salts in water.
Therefore, not only the emulsion itself but also the state of the dis-
perse phase is unstable. Just slow crystallization of the over-cooled
solution explains the increase in rigidity (increase of the yield stress,
viscosity and elastic modulus) of the emulsions with time, inverse to
the results presented in Figs. 33 and 34. It was shown that a direct
correlation between the degree of crystallinity (reached at a definite
time) and the yield stress as a typical measure of the rheological prop-
erties of an emulsions exists for a wide range of composition of highly
concentrated emulsions of this type.
Fig. 34.Decrease of the storagemodulus with time as a consequence of “aging” of highly
concentrated emulsions. (From [177], Fig. 1, with kind permission of Springer Science +
Business media).
8. Conclusion

It is unrealistic to imagine everyday life (and possibly life at all)
without emulsions. It is already sufficient to remember the huge num-
ber of food products (milk, mayonnaise, numerous creams, pastes,
musses), the great number of cosmetic and pharmaceutical stuffs, the
basics of photo technique, binders and solvents in buildings, greases
and cooling recipes in metal cutting machines, materials of road con-
struction (mixture of bitumens), lacquers and paints, crude oil and
many other products which are all emulsions. A new modern level of
investigation and application of emulsions is represented for example
by theuseof sub-micrometer components (nano-composites) in creat-
ing newmedicinal formulations. Therefore the great and continuously
growing interest in understanding the fundamental regularities of the
behaviour of emulsions is quite natural. There is also the permanent
tendency to creating new emulsions for solving these or those applied
problems.

Physicist–theoreticians, experts in fluid mechanics, professionals
in colloid chemistry, organic chemists creating newcompounds, applied
engineersworking for reaching concrete goals— all of themaredealing
with emulsions. Among other characteristics, the rheological proper-
ties of emulsions occupy their adequate place. These properties deter-
mine parameters of different technological processes in the production
and application of emulsions as well as such almost invisible factors
like “quality” of emulsions for different applications. Characteristics of
crude oil and oil products, lotions and ointments, pigments and food
products are estimated exactly in rheological terms expressed some-
times in rigorous parameters and sometimes by qualitative measures.

At present, we know a lot about the structure and rheology of
emulsions. The central goal here is the prediction of the emulsion
properties based on the properties of its components. This problem is
discussed by creating mechanical models. Their behaviour is con-
sidered by methods of continuum mechanics. The rigorous formula-
tion and the way of solution are based on the analysis of the dynamic
Navier–Stokes equations. Modern computer technique allows solving
such problems with any desirable accuracy. As a general rule, theories
are quite trustworthy when experimental results are well fitted by the
theoretical predictions.

The situation with highly concentrated (“compressed”) emulsions
at concentrations beyond the limit of closest packing of spherical
particles is even more complicated. Some thermodynamic arguments
connectedwith the conception of osmotic pressure and the increase of
the stored surface energy are useful terms in understanding rheo-
logical properties of such emulsions.

However such favourable picture has two principle limitations.
Firstly, it is necessary to realize clearly,whichproperties of an emulsion
are essential and what is the structure of an emulsion. The latter is
especially true in relation to the impact of intrinsic interfacial layers.
Secondly, the situation is rather evident if we speak about emulsions
formed by two Newtonian liquids, while the situation becomes more
difficult and uncertain when we speak about mixtures of two in-
compatiblenon-Newtonian liquids, for example twovisco-elastic poly-
meric components. The theoretical models proposed for such blends
are quite adequatewhen such compositions are treated as analogues of
emulsions formed from low-molecular-weight liquidswith droplets of
spherical shape. The situation becomes much more ambiguous when
the structure of a molten blend is not as simple as proposed by the
model. It happens when both components form continuous phases or
one of the components forms fibrils under deformation or if one of the
components has anisotropic properties.

A separate problem in discussing the rheology of emulsions is their
stability, which is understood in two ways: stability against the action
of mechanical forces, and stability with time called “aging”. Especially
in aging, a better analysis is based on a colloid-chemical approach
connected with interfacial interactions and the impact of surfactants
becomes dominating. In this approach, the bulk rheology plays a
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secondary role as amethod of monitoring changes in thematerial. The
problems in this field are frequently of great importance and attract
therefore permanent attention.

At any rate, it is quite obvious that today's knowledge about
emulsions of different compositions and structures does not explain
all problems and for future investigators there is a lot of interesting
and useful things to find out about these omnipresent objects.

List of symbols
А1, А2, А3, А4
 constants

А2
 second virial coefficient

В1, В2, В3
 fitting coefficients

Bo
 Boussinesq number

C
 factor

Са
 Capillary number

Ca⁎
 critical value of the Capillary number

D
 dimensionless factor

D23
 average droplet size

Deff
 apparent coefficient of diffusion

d
 diameter

dk
 characteristic length

dTI,max
 maximal size of a drop in the TI regime

dTV,max
 maximal size of a drop in the TV regime

D(ω,R) E(ω,R)
 functions

EGs
 surface modulus of elasticity (the Gibbs effect)

f1, f2
 factors

G
 elastic modulus

G′
 elastic (storage) modulus

G″
 loss modulus

Gexp′
 experimental values of dynamic modulus

Gp′
 dynamic modulus values predicted by the model

Gint er′
 dynamic modulus of an intermediate layer

Gbl′ (ω)
 elastic modulus of a blend

Gbl

⁎(ω)
 complex elastic modulus of a blend

G0
⁎(ω)
 dynamic modulus of a continuous phase
Gdr
⁎(ω)
 dynamic modulus of dispersed phase
Gs
 surface or interfacial modulus of elasticity

G
 gravitational acceleration

H(ω,R)
 function

K
 factor representing the influence of concentration on viscosity

k

B

Boltzmann constant
Pe
 Peclet number

R
 radius

Re
 Reynolds number

S
 surface area

Т
 absolute temperature

t
 time

U
 steady velocity

USt
 velocity of fall-out

V
 volume

V
 velocity

Vs
 wall velocity

w1, w2
 weigh shares

Γ
 absorption

γ̇
 shear rate

ε
 intensity of energy dissipation

bεN
 value of the mobility parameter

η
 viscosity

η0
 viscosity of continuous medium

ηdr
 viscosity of liquid of drops

ηr
 reduced viscosity

ηs
 surface or interfacial shear viscosity

ηd
 surface or interfacial dilatational viscosity

ηsurf
 ratio of surface or interfacial viscosity

η⁎(ω)
 complex viscosity

η(γ̇)
 apparent (non-Newtonian) viscosity

ηem
 viscosity of emulsion

ηbl
 viscosity of a blend

ηbl⁎
 dynamic viscosity of a blend

η0⁎
 dynamic viscosity of polymer forming continuous phase

ηdr⁎
 dynamic viscosity of polymer of droplets

θ
 relaxation time

λ
 ratio of viscosities of two liquids: of a continuous medium and drops

λm
 modified viscosity ratio

П
 osmotic pressure

ρ
 density

ρс
 density of liquid of continuous phase
σ
 surface or interfacial tension

τ
 shear stress

τY
 yield stress

υ
 kinematic viscosity

φ
 concentration of dispersed phase

φ⁎
 limit concentration of dispersed phase

ω
 frequency
The following acronyms are used for designation of polymers:
PE — polyethylene;
PP — polypropylene;
PC — polycarbonate;
PS — polystyrene;
PI — polyisoprene;
PMMA — poly(methyl metacrylate);
PIB — polyisobutylene;
PET — poly(ethylene terephthalate);
PBT — poly(butylene terephthalate);
PDMS — poly(dimethyl siloxane).
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